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Review

▶ We look at discrete time / discrete state space Markov chains
X0,X1, . . . ,Xn, . . . .

▶ What happens when n → ∞?

▶ For some Markov chains there is a (unique) limiting distribution
limn→∞ Pn

ij = vj .

▶ Which Markov chains have a limiting distribution, and how to
compute it? General results so far:
▶ There is a limiting distribution when P is regular.
▶ If a limiting distribution exists, there is exactly one stationary

distribution v (fulfilling vP = v), and it is equal to the limiting
distribution.
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Example from Lecture 3: Random walks on undirected
graphs

▶ An undirected graph consists of nodes and undirected edges
connecting them. (An edge may connect a node with itself).

▶ An undirected graph defines a random walk Markov chain by, at
every time step, following one of the edges out of a node, with equal
probability. (You also need a starting distribution).

▶ When the graph is finite, show that the vector u is a stationary
distribution, where ui = deg(i)/S , where deg(i) is the number of
edges going into edge i and S is the sum of all weights, counting
weights on edges between different nodes twice.

▶ Generalization: A weighted undirected graph is a graph with a
positive weight at any edge between i and j for all i and j .

▶ Define the Markov chain by choosing the next node with
probabilities according to the weights.

▶ Show that when the graph is finite, the vector u is a stationary
distribution, where ui = w(i)/S , where w(i) is the sum of the
weights of the edges going into i , and e is the total sum of all
weights, counted as above.
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Contents of Lecture

▶ Moving around: Recurrent and transient states; communication
classes.

▶ The limit theorem for finite irreducible Markov chains.

▶ Periodicity.

▶ Classification of irreducible Markov chains.

▶ Time reversibility.

▶ Canonical decomposition and absorbing chains.
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Moving between states

▶ State j is accessible from state i if (Pn)ij > 0 for some n ≥ 0.

▶ States i and j communicate if i is accessible from j and j is
accessible from i .

▶ “Communication” is transitive, i.e., if i communicates with j and j
communicates with k , then i communicates with k.

▶ Communication is an equivalence relation, subdividing all states into
communication classes.

▶ Communication classes can be found for example by drawing
transition graphs.

▶ A Markov chain is irreducible if it has exactly one communication
class.
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Recurrence and transience

▶ Let Tj be the first passage time to state j :
Tj = min{n > 0 : Xn = j}.

▶ Define fj as the probability that a chain starting at j will return to j :

fj = P(Tj < ∞ | X0 = j)

▶ A state j is recurrent if a chain starting at j will eventually revisit j ,
i.e., if fj = 1.

▶ A state j is transient if a chain starting at j has a positive probability
of never revisiting j , i.e., if fj < 1.

▶ Note: The expected number of visits at j when the chain starts at i
is given by

∑∞
n=0(P

n)ij .

▶ j is recurrent if and only if
∑∞

n=0(P
n)jj = ∞.

▶ j is transient if and only if
∑∞

n=0(P
n)jj < ∞.
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Communication classes

▶ The states of a communication class are either all recurrent or all
transient.

▶ The states of a finite irreducible Markov chain are all recurrent.

▶ Note: There are infinite irreducible Markov chains where all states
are transient.

▶ Example: Simple random walk with non-symmetric probabilities.

▶ If a state is recurrent, only states inside its communication class are
accessible from it.

▶ If no states outside a finite communication class are accesible from
it, then the class consists of recurrent states.
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Finite irreducible Markov chains

▶ Recall: In a finite irreducible Markov chain, all states are recurrent.

▶ Limit Theorem for Finite Irreducible Markov Chains: Let
µj = E (Tj | X0 = j) be the expected return time to j . Then µj < ∞
and the vector v with vj = 1/µj is the unique stationary
distribution. Furthermore,

vj = lim
n→∞

1

n

n−1∑
m=0

(Pm)ij .

▶ NOTE: All finite regular Markov chains are finite irreducible Markov
chains, but not vice versa.

▶ NOTE: The conclusion is weaker than that for finite regular Markov
chains: Not all finite irreducible Markov chains have limiting
distributions.

▶ Example: The theorem holds for the chain with transition matrix

P =

0 1 0
0 0 1
1 0 0

.
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Extention to infinite irreducible Markov chains

▶ In a finite irreducible Markov chain, all states are recurrent, and all
expected return times µj are finite.

▶ In a Markov chain, states may be recurrent but with infinite expected
return times. Such states are called null recurrent, while recurrent
states with finite expected return times are called positive recurrent.

▶ The previous theorem may be extended to infinite irreducible Markov
chains where all states are positive recurrent.
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Periodicity

▶ The period of a state i is the greatest common divisor of all n > 0
such that (Pn)ii > 0.

▶ All states of a communication class have the same period: See proof
in Dobrow.

▶ A Markov chain is periodic if it is irreducible and all states have
period greater than 1.

▶ A Markov chain is aperiodic if it is irreducible and all states have
period equal to 1.
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Classification of (discrete time, discrete state space)
irreducible Markov chains

Irreducible Markov chains

For remaining chains: 
Theorem 3.6 holds, about limits of
averages

Ergodic Markov Chains. Theorem 3.8 
holds, about limiting distributions. 

= Markov chains with regular transition
matrices

Infinite state space chains with
states that are transient or null
recurrent

PeriodicAperiodic

Figure: A subdivision of (discrete time, discrete state space) irreducible Markov
chains
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Ergodic Markov chains

▶ A Markov chain is ergodic if
▶ it is irreducible
▶ it is aperiodic
▶ all states are positive recurrent (i.e., have finite expected return

times). (Always happens if the state space is finite).

▶ Fundamental Limit Theorem for Ergodic Markov Chains: There
exists a unique positive stationary distribution v which is the limiting
distribution of the chain.

▶ We can also show that a finite Markov chain is ergodic if and only if
it its transition matrix is regular.
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Time reversibility

Let P be the transition matrix of an irreducible Markov chain with
stationary distribution v .

▶ The chain is “time reversible” if, when running from its stationary
distribution, it looks the same moving foreard as backwards, i.e.,
π(Xk = i ,Xk+1 = j) = π(Xk+1 = i ,Xk = j).

▶ This may also be written as viPij = vjPji for all i , j : The detailed
balance condition.

▶ Show: If x is a probability vector satisfying xiPij = xjPji for all i , j ,
then necessarily x is the stationary distribution, so that x = v .

▶ Show: If a Markov chain is defined as a random walk on a weighted
undirected graph, then it is time reversible.

▶ Show: If a finite Markov chain is time reversible, it can be
represented as a random walk on a weighted undirected graph.
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Canonical decomposition (assume a finite state space)

▶ The states of a Markov chain can be subdivided into communication
classes, each consisting only of transient or recurrent states.

▶ Let T denote the union of all communication classes with transient
states. Let remaining communication classes be R1,R2, . . . ,Rm.

▶ Each Ri must necessarily be closed in the sense that no states
outside Ri are accessible from Ri .

▶ Ordering states according to T , R1, . . . , Rm, the transition matrix
can be written

P =


∗ ∗ · · · ∗
0 P1 · · · 0
...

...
. . .

...
0 0 · · · Pm

 .

▶ We get

Pn =


∗ ∗ · · · ∗
0 Pn

1 · · · 0
...

...
. . .

...
0 0 · · · Pn

m


and can take the limits of each Pn

i , if they exist.
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Absorbing chains

▶ State i is absorbing if Pii = 1.
▶ A Markov chain is absorbing if it has at least one absorbing state.
▶ By reordering the states, the transition matrix for an absorbing chain

can be written in block form

P =

[
Q R
0 I

]
.

where I is the identity matrix, 0 is a matrix of zeros, and Q
corresponds to transient states.

▶ We can prove by induction that

Pn =

[
Qn

(
I + Q + Q2 + · · ·+ Qn−1

)
R

0 I

]
.

▶ Taking the limit and using limn→∞ Qn = 0 we get

lim
n→∞

Pn =

[
0 (I − Q)−1R
0 I

]
=

[
0 FR
0 I

]
.

▶ F = (I − Q)−1 = limn→∞ I + Q + · · ·+ Qn is called the
fundamental matrix.
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Absorbing chains, cont

▶ The probability to be absorbed in a particular absorbing state given
a start in a transient state is given by the entries of FR.

▶ Further, the expected number of visits in state j for a chain that
starts in the transient state i is given by Fij . (See proof in Dobrow).

▶ Thus, the expected number of steps until absorbtion is given by the
vector F1t .

▶ Note: Given an irreducible Markov chain. To compute the expected
number of steps needed to go from state i to the first visit to state
j , one can change the chain into one where state j is absorbing, and
compute the expected number of steps until absorbtion using the
theory above.
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Example: First detection of a particular sequence

▶ Assume you want to find the expected number of steps until you
detect HTTH in a sequence of fair coin flips.

▶ Build a Markov chain where the states indicate how far into the
sequence you have read so far. Make the state HTTH absorbing.

▶ Find the transition matrix in canonical block form.
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