Time reversibility

Let P be the transition matrix of an irreducible Markov chain with
stationary distribution v.

» The chain is “time reversible” if, when running from its stationary
distribution, it looks the same moving foreard as backwards, i.e.,
T(Xie = i, Xiewr = J) = 7(Xiyr = 1, X = j).

» This may also be written as v;Pj; = v;Pj; for all i, j: The detailed
balance condition.

» Show: If x is a probability vector satisfying x; P = x;Pj; for all i, },
then necessarily x is the stationary distribution, so that x = v.

» Show: If a Markov chain is defined as a random walk on a weighted
undirected graph, then it is time reversible.

» Show: If a finite Markov chain is time reversible, it can be
represented as a random walk on a weighted undirected graph.
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Canonical decomposition (assume a finite state space)

» The states of a Markov chain can be subdivided into communication
classes, each consisting only of transient or recurrent states.

» Let T denote the union of all communication classes with transient
states. Let remaining communication classes be Ry, R>, ..., Rny.

» Each R; must necessarily be closed in the sense that no states
outside R; are accessible from R;.

» Ordering states according to T, Ry, ..., Ry, the transition matrix
can be written

0O P -~ O
P=1. . .
0 0 - Pp
> We get
0 P -~ 0
P =1. . )
o o --- P}

and can take the limits of each P/, if they exist.
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Absorbing chains

>
>
| 4

State i is absorbing if P; = 1.
A Markov chain is absorbing if it has at least one absorbing state.
By reordering the states, the transition matrix for an absorbing chain
can be written in block form
_|Q@ R
P-[3 ]
where [ is the identity matrix, 0 is a matrix of zeros, and @
corresponds to transient states.
We can prove by induction that
pn_ {Q” I+Q+ Q%+ -+ Q"1 R]
=10 / .

Taking the limit and using lim, ., @" = 0 we get

. o 1—Q)R] [0 FR
n'LmooP{o / ]{0 /}
F=(—-Q) =limyyoo ! +Q+ -+ Q"is called the

fundamental matrix.
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Absorbing chains, cont

» The probability to be absorbed in a particular absorbing state given
a start in a transient state is given by the entries of FR.

» Further, the expected number of visits in transient state j for a chain
that starts in the transient state / is given by Fj;. (See proof in
Dobrow).

» Thus, the expected number of steps until absorbtion is given by the
vector F1%.

» Note: Given an irreducible Markov chain. To compute the expected
number of steps needed to go from state i to the first visit to state
J, one can change the chain into one where state j is absorbing, and
compute the expected number of steps until absorbtion using the
theory above.
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Example: First detection of a particular sequence

» Assume you want to find the expected number of steps until you
detect HTTH in a sequence of fair coin flips.

» Build a Markov chain where the states indicate how far into the
sequence you have read so far. Make the state HTTH absorbing.

» Find the transition matrix in canonical block form.
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Overview

Hidden Markov Models: Introduction and examples

Inference questions for HMMs.

>
>

» The Multinomial-Dirichlet conjugacy.
» Some inference for Markov chains.

>

Some inference for HMMs.
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Example: Not quite a Markov chain

Exercise 2.20 from Dobrow:

> Let Xp, X1,... be a Markov chain with transition matrix
0 1 0
P=10 0 1
p 1—-p O

for some 0 < p < 1. Let g be the function defined by

(x) = 0, ifx=1
EVI97N1, ifx=23
If we let Y, = g(X,) for n > 0is Yp, Y1,... a Markov chain?

» Common phenomenon: The underlying process may reasonably be a
Markov chain, but what we observe is not!
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Hidden Markov Models

» A Hidden Markov Model (HMM) consists of
» a Markov chain Xy, ..., Xp,...,, and
» another sequence Yp,..., Y,..., so that

Pr(Yk | Y(),...,kal,Xo,...,Xk) = PI’(Yk ‘ Xk)

Figure: A hidden Markov model.

» In some models we instead have
PI’(Yk | Yo, ey Yk717X0; . ,Xk) = Pr(Yk | kal,Xk). There are
then extra arrows from y,_1 to yi in the figure above.

» Generally, Yg,..., Yk..., are observed, while Xo,..., Xk ..., are
hidden.

» In our applications, the X, have a finite state space and the Y/ are
discrete.
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Example 1: Cough medicine

» Each day i/ a pharmacy sells Y; bottles of cough medicine. We
assume Y; ~ Poisson(X;) where X; is the “underlying demand”, X;
has possible values 10 and 30, and is modelled by a Markov chain

0.95 0.05

0.2 038 ]

» A simulation from the flu model. The full line represents the
underlying expected demand for cough-medicine, based on whether
there is a flu-infection in the area or not. The dots represent the
observed actual sales of the medicine.

with transition matrix P = [

40

20
I T |

0 10 20 30 40 50 60

» Can we learn about the presence of flu-infection from sales of
cough-medicine?
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Example 2: CpG islands

» DNA sequences may be modelled as Markov chains, with possible
values A, C, G, T and the positions along the sequence as the steps
in the chain.

» So-called “CpG islands” are sequences where the transition matrix
(P4) appears to be slightly different from the transition matrix (P-)
of of non-CpG islands:

0.180 0.274 0.426 0.120 0.300 0.205 0.285 0.210
p. — 0.171 0.368 0.274 0.188 p — 0.322 0.298 0.078 0.302
* 7 lo161 0339 0.375 0.125|' T [0.248 0.246 0.298 0.208

0.079 0.355 0.384 0.182 0.177 0.239 0.292 0.292

» To detect CpG islands in a new DNA string, we set up a HMM
where the underlying variable X; has the two states: “CpG island"”
and “non-CpG island”.
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What questions do we want to ask?

» When the parameters of the HMM are known, we want to know
about the values of the hidden variables X;. For example:
> What is the most likely sequence Xy, ..., X, given the data?
» What is the probability distribution for a single X; given the data?
» When the parameters of the HMM are not known, we need to infer
these from some data.
> If data with all X; and Y; known is available, inference for
parameters is based on counts of transitions.
» Inference may even be done based only on observations of the Y; and
some assumptions on the X; (not done in this course).
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The Multinomial Dirchlet conjugacy

» A vector x = (x1,...,xk) of non-negative integers has a Multinomial
distribution with parameters n and p, where n > 0 is an integer and
p is a probability vector of length k, if Zf(zl x; = n and the
probability mass function is given by

n!

: X1 X2 Xk
| X!P1P2--~Pk-

mlxlnp)= x11x k

» A vector p = (p1, ..., pk) of non-negative real numbers satisfying
Zle pi = 1 has a Dirichlet distribution with parameter vector
a = (ai,...,ax), if it has probability density function

Mo +as+--+ak) a1 ap1 an—1
71-(p | Oé) - r(Ot]_)r(Olz) . r(Oék) P1 P> pk :

» \We have conjugacy in this case: p | x ~ Dirichlet(a + x).
» If p ~ Dirichlet(«) then E(p) = E%

j=1%j
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The Multinomial Dirchlet conjugacy, predictions

» The (prior) predictive distribution is given by

n! Moy + x1) . Mok + xk) F(Zfﬂ ;)

x1! .o xg! . F(al) a F(ak) . F(Zf;l Oz,'-i-X,')'

m(x) =

» For example, if p ~ Dirichlet(«), the predicted probability that the
next observation is of type i is

871

7T(x:e,-:(0,...,1,...,0) | Oé): P
Zj:laj
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Inference for finite state space Markov chains

» Example: You have observed 0, 1,1,0,0,0,1,0,0, 1, 0 from a
Markov chain with possible values 0 and 1. What is the transition

matrix?
011
» First, make table with counts of transitions: 0 | 3 .
1131
» A reasonable guess for a transition matrix is then
p_ 3/6 3/6
T 13/4 1/4)°

» What should happen if we have never observed a transition i — j for
two states / and j?

» What should happen if we have never observed any transition from a
state /7
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One solution: pseudo-counts

>

Idea: If the count is zero, add some small positive number, a
pseudo-count, so that the frequency becomes non-zero.

The pseudo-count does not need to be an integer.

To be “fair”, we may add the same pseudo-count to all counts. We
often use pseudo-counts equal to 1.

In the example above, with pseudo-counts 1, the count table
0|1
becomes 0 | 4 | 4 |and the transition matrix becomes
11412
p_ 4/8 4/8
- |4/6 2/6|°

Note how the influence of pseudo-counts approaches zero when the
actual counts increase.

What should happen if the state space is infinite?

Generally, is there a theoretic framework to put this into?
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Bayesian inference for Markov chains

>

>

>

Write Py, ..., Py for the k rows of P, and view each P; as an
independent random variable.

Note that observed data (counts of transitions from each state i) is
Multinomially distributed given P;.

If we assume P; ~ Dirichlet(e;) for some vector a; = (e, - . ., @ik),
and the counts for transitions out of i are given in the vector

¢i = (¢, - .-, Cik), then the posterior for P; becomes

Dirichlet(«; + ¢;).

Note that the expectected posterior becomes the vector

i + G
(€ e o€ 7 o B el &7

E(P; | data) =

So the «jj correspond exactly to pseudo-counts!

The prior Dirichlet(1,1,...,1), with all pseudo-counts equal to 1
corresponds to a uniform distribution on the set of all probability
vectors P; that sum to 1.
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More conclusions from the Bayesian framework

» We can show that, using any prior, if the sequence Xp, X1,..., X, is
observed as data, then the posterior probabilities for X1 are
E(P,,).

» We can extend this to compute the probability of any sequence
Xnt1y - -y Xntr given data Xo, ..., X,.

» When the prior is Dirichlet as above, we can use the predictive
distribution found above.

> If we know a priori that certain transitions are impossible, we can
incorporate this into the prior: For example, using the prior
P; ~ Dirichlet(1,1,0) ,means that transitions from state / to state 3
have probability zero.

» [t is also possible to construct priors for the transition matrix P that
represent other types of prior information, for example that the
Markov chain must be time reversible.
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Inference for the parameters of HMMs

Assume an HMM model where X; € {0,1}, Y; € {1, 2,3}, and we have

observed both states in some stretch of data:
Xjo0of(ojojof1y1|1j1f1]o0

Y|1|2|1|1]2|3]|2|3|3]|1

0|1 1123
» Counting transitions, weget 0 | 3| 1jand 0|4 |1 |0 |
1(1/4 110123

» In practice, we can use pseudocounts just as in the Markov chain
case. In the example above, using all pseudocounts equal to 1, we

get
p_ 4/6 2/6 Q- 5/8 2/8 1/8
- |2/7 5/7|°F |1/8 3/8 4/8
where P is the transition matrix of the Markov chain, and @ is the

stochastic matrix of transition probabilities from X; to Y;.

» As for Markov chains, these results can be obtained by using priors
for P and @ that are products of Dirichlet distributions.
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More on inference of parameters for HMMs

» The Bayesian paradigm may be used to make predictions for later
observations: In the example above, with Xp, ... Xo, Yo,... Yo
observed, the probability vector with the three possible values of Yiq
can be computed with the matrix product E (Py,) E(Q).

» The priors can be adapted to incorporate actual prior information.

» For example, prior knowledge about the transitions from states of X;
to states of Y; might lead you to model Y; ~ Poisson(\x;), so for
each value of X; the Y; are Poisson distributed with parameter \x;.
Fixing a prior also on the Ax. parameters, we may then find the
posteriors for these in similar ways as we have done before.
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More inference questions for HMMs

» We focused above on the case where (some) parameters of the
HMM are not fully known.

» If the HMM parameters are given and the Y; are observed, the goal
may instead be to learn about the values of the X; (these methods
are not part of the course):

» Find the sequence Xp, ..., Xk with the maximum probability given
the observed Yo, ..., Yk and the given model: The Viterbi algorithm.
» Find the marginal distribution for each X; given the observed
Yo, ..., Yk and the model: The Forward-Backward algorithm.
» Find the joint distribution of X, ..., Xk given the observed
Yo, ..., Yk and the model. In practice: Find a sequence Xo, ..., Xk

that is a sample from this joint distribution. This may also be done
with a Forward-Backward algorithm.
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