Time reversibility

Let P be the transition matrix of an irreducible Markov chain with stationary distribution v.

- The chain is "time reversible" if, when running from its stationary distribution, it looks the same moving foreard as backwards, i.e., $\pi\left(X_{k}=i, X_{k+1}=j\right)=\pi\left(X_{k+1}=i, X_{k}=j\right)$.
- This may also be written as $v_{i} P_{i j}=v_{j} P_{j i}$ for all i, j : The detailed balance condition.
- Show: If x is a probability vector satisfying $x_{i} P_{i j}=x_{j} P_{j i}$ for all i, j, then necessarily x is the stationary distribution, so that $x=v$.
- Show: If a Markov chain is defined as a random walk on a weighted undirected graph, then it is time reversible.
- Show: If a finite Markov chain is time reversible, it can be represented as a random walk on a weighted undirected graph.

Canonical decomposition (assume a finite state space)

- The states of a Markov chain can be subdivided into communication classes, each consisting only of transient or recurrent states.
- Let T denote the union of all communication classes with transient states. Let remaining communication classes be $R_{1}, R_{2}, \ldots, R_{m}$.
- Each R_{i} must necessarily be closed in the sense that no states outside R_{i} are accessible from R_{i}.
- Ordering states according to T, R_{1}, \ldots, R_{m}, the transition matrix can be written

$$
P=\left[\begin{array}{cccc}
* & * & \cdots & * \\
0 & P_{1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & P_{m}
\end{array}\right]
$$

- We get

$$
P^{n}=\left[\begin{array}{cccc}
* & * & \cdots & * \\
0 & P_{1}^{n} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & P_{m}^{n}
\end{array}\right]
$$

and can take the limits of each P_{i}^{n}, if they exist.

Absorbing chains

- State i is absorbing if $P_{i i}=1$.
- A Markov chain is absorbing if it has at least one absorbing state.
- By reordering the states, the transition matrix for an absorbing chain can be written in block form

$$
P=\left[\begin{array}{cc}
Q & R \\
\mathbf{0} & I
\end{array}\right] .
$$

where I is the identity matrix, $\mathbf{0}$ is a matrix of zeros, and Q corresponds to transient states.

- We can prove by induction that

$$
P^{n}=\left[\begin{array}{cc}
Q^{n} & \left(I+Q+Q^{2}+\cdots+Q^{n-1}\right) R \\
\mathbf{0} & I
\end{array}\right] .
$$

- Taking the limit and using $\lim _{n \rightarrow \infty} Q^{n}=0$ we get

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{cc}
\mathbf{0} & (I-Q)^{-1} R \\
\mathbf{0} & I
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0} & F R \\
\mathbf{0} & I
\end{array}\right] .
$$

- $F=(I-Q)^{-1}=\lim _{n \rightarrow \infty} I+Q+\cdots+Q^{n}$ is called the fundamental matrix.

Absorbing chains, cont

- The probability to be absorbed in a particular absorbing state given a start in a transient state is given by the entries of $F R$.
- Further, the expected number of visits in transient state j for a chain that starts in the transient state i is given by $F_{i j}$. (See proof in Dobrow).
- Thus, the expected number of steps until absorbtion is given by the vector $F 1^{t}$.
- Note: Given an irreducible Markov chain. To compute the expected number of steps needed to go from state i to the first visit to state j, one can change the chain into one where state j is absorbing, and compute the expected number of steps until absorbtion using the theory above.

Example: First detection of a particular sequence

- Assume you want to find the expected number of steps until you detect HTTH in a sequence of fair coin flips.
- Build a Markov chain where the states indicate how far into the sequence you have read so far. Make the state HTTH absorbing.
- Find the transition matrix in canonical block form.

MVE550 2022 Lecture 5
 Compendium chapters 2 and 3 Hidden Markov Models (HMM) Inference for Markov chains and HMMs

Petter Mostad

Chalmers University

November 15, 2022

Overview

- Hidden Markov Models: Introduction and examples
- Inference questions for HMMs.
- The Multinomial-Dirichlet conjugacy.
- Some inference for Markov chains.
- Some inference for HMMs.

Example: Not quite a Markov chain

Exercise 2.20 from Dobrow:

- Let X_{0}, X_{1}, \ldots be a Markov chain with transition matrix

$$
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
p & 1-p & 0
\end{array}\right]
$$

for some $0<p<1$. Let g be the function defined by

$$
g(x)=\left\{\begin{array}{lc}
0, & \text { if } x=1 \\
1, & \text { if } x=2,3
\end{array}\right.
$$

If we let $Y_{n}=g\left(X_{n}\right)$ for $n \geq 0$ is Y_{0}, Y_{1}, \ldots a Markov chain?

- Common phenomenon: The underlying process may reasonably be a Markov chain, but what we observe is not!

Hidden Markov Models

- A Hidden Markov Model (HMM) consists of
- a Markov chain $X_{0}, \ldots, X_{n}, \ldots$, , and
- another sequence $Y_{0}, \ldots, Y_{n}, \ldots$, so that

$$
\operatorname{Pr}\left(Y_{k} \mid Y_{0}, \ldots, Y_{k-1}, X_{0}, \ldots, X_{k}\right)=\operatorname{Pr}\left(Y_{k} \mid X_{k}\right)
$$

Figure: A hidden Markov model.

- In some models we instead have
$\operatorname{Pr}\left(Y_{k} \mid Y_{0}, \ldots, Y_{k-1}, X_{0}, \ldots, X_{k}\right)=\operatorname{Pr}\left(Y_{k} \mid Y_{k-1}, X_{k}\right)$. There are then extra arrows from y_{k-1} to y_{k} in the figure above.
- Generally, $Y_{0}, \ldots, Y_{k} \ldots$, are observed, while $X_{0}, \ldots, X_{k} \ldots$, are hidden.
- In our applications, the X_{k} have a finite state space and the Y_{k} are discrete.

Example 1: Cough medicine

- Each day i a pharmacy sells Y_{i} bottles of cough medicine. We assume $Y_{i} \sim \operatorname{Poisson}\left(X_{i}\right)$ where X_{i} is the "underlying demand", X_{i} has possible values 10 and 30 , and is modelled by a Markov chain with transition matrix $P=\left[\begin{array}{cc}0.95 & 0.05 \\ 0.2 & 0.8\end{array}\right]$.
- A simulation from the flu model. The full line represents the underlying expected demand for cough-medicine, based on whether there is a flu-infection in the area or not. The dots represent the observed actual sales of the medicine.

- Can we learn about the presence of flu-infection from sales of cough-medicine?

Example 2: CpG islands

- DNA sequences may be modelled as Markov chains, with possible values $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$ and the positions along the sequence as the steps in the chain.
- So-called "CpG islands" are sequences where the transition matrix $\left(P_{+}\right)$appears to be slightly different from the transition matrix $\left(P_{-}\right)$ of of non-CpG islands:

$$
P_{+}=\left[\begin{array}{llll}
0.180 & 0.274 & 0.426 & 0.120 \\
0.171 & 0.368 & 0.274 & 0.188 \\
0.161 & 0.339 & 0.375 & 0.125 \\
0.079 & 0.355 & 0.384 & 0.182
\end{array}\right], P_{-}=\left[\begin{array}{llll}
0.300 & 0.205 & 0.285 & 0.210 \\
0.322 & 0.298 & 0.078 & 0.302 \\
0.248 & 0.246 & 0.298 & 0.208 \\
0.177 & 0.239 & 0.292 & 0.292
\end{array}\right]
$$

- To detect CpG islands in a new DNA string, we set up a HMM where the underlying variable X_{i} has the two states: "CpG island" and "non-CpG island".

What questions do we want to ask?

- When the parameters of the HMM are known, we want to know about the values of the hidden variables X_{i}. For example:
- What is the most likely sequence X_{0}, \ldots, X_{n} given the data?
- What is the probability distribution for a single X_{i} given the data?
- When the parameters of the HMM are not known, we need to infer these from some data.
- If data with all X_{i} and Y_{i} known is available, inference for parameters is based on counts of transitions.
- Inference may even be done based only on observations of the Y_{i} and some assumptions on the X_{i} (not done in this course).

The Multinomial Dirchlet conjugacy

- A vector $x=\left(x_{1}, \ldots, x_{k}\right)$ of non-negative integers has a Multinomial distribution with parameters n and p, where $n>0$ is an integer and p is a probability vector of length k, if $\sum_{i=1}^{k} x_{i}=n$ and the probability mass function is given by

$$
\pi(x \mid n, p)=\frac{n!}{x_{1}!x_{2}!\ldots x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}} .
$$

- A vector $p=\left(p_{1}, \ldots, p_{k}\right)$ of non-negative real numbers satisfying $\sum_{i=1}^{k} p_{i}=1$ has a Dirichlet distribution with parameter vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, if it has probability density function

$$
\pi(p \mid \alpha)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdot \Gamma\left(\alpha_{k}\right)} p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{k}^{\alpha_{k}-1} .
$$

- We have conjugacy in this case: $p \mid x \sim \operatorname{Dirichlet}(\alpha+x)$.
- If $p \sim \operatorname{Dirichlet}(\alpha)$ then $\mathrm{E}(p)=\frac{\alpha}{\sum_{j=1}^{k} \alpha_{j}}$.

The Multinomial Dirchlet conjugacy, predictions

- The (prior) predictive distribution is given by

$$
\pi(x)=\frac{n!}{x_{1}!\ldots x_{k}!} \cdot \frac{\Gamma\left(\alpha_{1}+x_{1}\right)}{\Gamma\left(\alpha_{1}\right)} \cdots \frac{\Gamma\left(\alpha_{k}+x_{k}\right)}{\Gamma\left(\alpha_{k}\right)} \cdot \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}+x_{i}\right)} .
$$

- For example, if $p \sim \operatorname{Dirichlet}(\alpha)$, the predicted probability that the next observation is of type i is

$$
\pi\left(x=e_{i}=(0, \ldots, 1, \ldots, 0) \mid \alpha\right)=\frac{\alpha_{i}}{\sum_{j=1}^{k} \alpha_{j}}
$$

Inference for finite state space Markov chains

- Example: You have observed 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0 from a Markov chain with possible values 0 and 1 . What is the transition matrix?
- First, make table with counts of transitions:

	0	1
0	3	3
1	3	1

- A reasonable guess for a transition matrix is then

$$
P=\left[\begin{array}{ll}
3 / 6 & 3 / 6 \\
3 / 4 & 1 / 4
\end{array}\right] .
$$

- What should happen if we have never observed a transition $i \rightarrow j$ for two states i and j ?
- What should happen if we have never observed any transition from a state i ?

One solution: pseudo-counts

- Idea: If the count is zero, add some small positive number, a pseudo-count, so that the frequency becomes non-zero.
- The pseudo-count does not need to be an integer.
- To be "fair", we may add the same pseudo-count to all counts. We often use pseudo-counts equal to 1 .
- In the example above, with pseudo-counts 1, the count table becomes | | | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 4 | 4 | |
| | 1 | 4 | 2 | and the transition matrix becomes

$$
P=\left[\begin{array}{ll}
4 / 8 & 4 / 8 \\
4 / 6 & 2 / 6
\end{array}\right]
$$

- Note how the influence of pseudo-counts approaches zero when the actual counts increase.
- What should happen if the state space is infinite?
- Generally, is there a theoretic framework to put this into?

Bayesian inference for Markov chains

- Write P_{1}, \ldots, P_{k} for the k rows of P, and view each P_{i} as an independent random variable.
- Note that observed data (counts of transitions from each state i) is Multinomially distributed given P_{i}.
- If we assume $P_{i} \sim \operatorname{Dirichlet}\left(\alpha_{i}\right)$ for some vector $\alpha_{i}=\left(\alpha_{i 1}, \ldots, \alpha_{i k}\right)$, and the counts for transitions out of i are given in the vector $c_{i}=\left(c_{i 1}, \ldots, c_{i k}\right)$, then the posterior for P_{i} becomes Dirichlet $\left(\alpha_{i}+c_{i}\right)$.
- Note that the expectected posterior becomes the vector

$$
\mathrm{E}\left(P_{i} \mid \text { data }\right)=\frac{\alpha_{i}+c_{i}}{\alpha_{i 1}+\cdots+\alpha_{i k}+c_{i 1}+\cdots+c_{i k}}
$$

So the $\alpha_{i j}$ correspond exactly to pseudo-counts!

- The prior Dirichlet $(1,1, \ldots, 1)$, with all pseudo-counts equal to 1 corresponds to a uniform distribution on the set of all probability vectors P_{i} that sum to 1 .

More conclusions from the Bayesian framework

- We can show that, using any prior, if the sequence $X_{0}, X_{1}, \ldots, X_{n}$ is observed as data, then the posterior probabilities for X_{n+1} are $\mathrm{E}\left(P_{x_{n}}\right)$.
- We can extend this to compute the probability of any sequence X_{n+1}, \ldots, X_{n+r} given data X_{0}, \ldots, X_{n}.
- When the prior is Dirichlet as above, we can use the predictive distribution found above.
- If we know a priori that certain transitions are impossible, we can incorporate this into the prior: For example, using the prior $P_{i} \sim \operatorname{Dirichlet}(1,1,0)$,means that transitions from state i to state 3 have probability zero.
- It is also possible to construct priors for the transition matrix P that represent other types of prior information, for example that the Markov chain must be time reversible.

Inference for the parameters of HMMs

Assume an HMM model where $X_{i} \in\{0,1\}, Y_{i} \in\{1,2,3\}$, and we have observed both states in some stretch of data:

X	0	0	0	0	1	1	1	1	1	0
Y	1	2	1	1	2	3	2	3	3	1

- Counting transitions, we get \begin{tabular}{l|l|l|}
\& 0 \& 1

\hline 0 \& 3 \& 1

\hline 1 \& 1 \& 4

\hline

 and

\& 1 \& 2 \& 3

\hline 0 \& 4 \& 1 \& 0

\hline 1 \& 0 \& 2 \& 3

\hline
\end{tabular}

- In practice, we can use pseudocounts just as in the Markov chain case. In the example above, using all pseudocounts equal to 1 , we get

$$
P=\left[\begin{array}{ll}
4 / 6 & 2 / 6 \\
2 / 7 & 5 / 7
\end{array}\right], Q=\left[\begin{array}{lll}
5 / 8 & 2 / 8 & 1 / 8 \\
1 / 8 & 3 / 8 & 4 / 8
\end{array}\right]
$$

where P is the transition matrix of the Markov chain, and Q is the stochastic matrix of transition probabilities from X_{i} to Y_{i}.

- As for Markov chains, these results can be obtained by using priors for P and Q that are products of Dirichlet distributions.

More on inference of parameters for HMMs

- The Bayesian paradigm may be used to make predictions for later observations: In the example above, with $X_{0}, \ldots X_{9}, Y_{0}, \ldots Y_{9}$ observed, the probability vector with the three possible values of Y_{10} can be computed with the matrix product $\mathrm{E}\left(P_{x_{9}}\right) \mathrm{E}(Q)$.
- The priors can be adapted to incorporate actual prior information.
- For example, prior knowledge about the transitions from states of X_{i} to states of Y_{i} might lead you to model $Y_{i} \sim \operatorname{Poisson}\left(\lambda_{x_{i}}\right)$, so for each value of X_{i} the Y_{i} are Poisson distributed with parameter $\lambda_{x_{i}}$. Fixing a prior also on the $\lambda_{X_{i}}$ parameters, we may then find the posteriors for these in similar ways as we have done before.

More inference questions for HMMs

- We focused above on the case where (some) parameters of the HMM are not fully known.
- If the HMM parameters are given and the Y_{i} are observed, the goal may instead be to learn about the values of the X_{i} (these methods are not part of the course):
- Find the sequence X_{0}, \ldots, X_{k} with the maximum probability given the observed Y_{0}, \ldots, Y_{k} and the given model: The Viterbi algorithm.
- Find the marginal distribution for each X_{i} given the observed Y_{0}, \ldots, Y_{k} and the model: The Forward-Backward algorithm.
- Find the joint distribution of X_{0}, \ldots, X_{k} given the observed Y_{0}, \ldots, Y_{k} and the model. In practice: Find a sequence X_{0}, \ldots, X_{k} that is a sample from this joint distribution. This may also be done with a Forward-Backward algorithm.

