
Inference for the parameters of HMMs

Assume an HMM model where Xi ∈ {0, 1}, Yi ∈ {1, 2, 3}, and we have
observed both states in some stretch of data:
X 0 0 0 0 1 1 1 1 1 0
Y 1 2 1 1 2 3 2 3 3 1

▶ Counting transitions, we get

0 1
0 3 1
1 1 4

and

1 2 3
0 4 1 0
1 0 2 3

.

▶ In practice, we can use pseudocounts just as in the Markov chain
case. In the example above, using all pseudocounts equal to 1, we
get

P =

[
4/6 2/6
2/7 5/7

]
,Q =

[
5/8 2/8 1/8
1/8 3/8 4/8

]
where P is the transition matrix of the Markov chain, and Q is the
stochastic matrix of transition probabilities from Xi to Yi .

▶ As for Markov chains, these results can be obtained by using priors
for P and Q that are products of Dirichlet distributions.
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More on inference of parameters for HMMs

▶ The Bayesian paradigm may be used to make predictions for later
observations: In the example above, with X0, . . .X9,Y0, . . .Y9

observed, the probability vector with the three possible values of Y10

can be computed with the matrix product E (Px9) E (Q).

▶ The priors can be adapted to incorporate actual prior information.

▶ For example, prior knowledge about the transitions from states of Xi

to states of Yi might lead you to model Yi ∼ Poisson(λXi ), so for
each value of Xi the Yi are Poisson distributed with parameter λXi .
Fixing a prior also on the λXi parameters, we may then find the
posteriors for these in similar ways as we have done before.
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More inference questions for HMMs (for information)

▶ We focused above on the case where (some) parameters of the
HMM are not fully known.

▶ If the HMM parameters are given and the Yi are observed, the goal
may instead be to learn about the values of the Xi (these methods
are not part of the course):
▶ Find the sequence X0, . . . ,Xk with the maximum probability given

the observed Y0, . . . ,Yk and the given model: The Viterbi algorithm.
▶ Find the marginal distribution for each Xi given the observed

Y0, . . . ,Yk and the model: The Forward-Backward algorithm.
▶ Find the joint distribution of X0, . . . ,Xk given the observed

Y0, . . . ,Yk and the model. In practice: Find a sequence X0, . . . ,Xk

that is a sample from this joint distribution. This may also be done
with a Forward-Backward algorithm.
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Introduction

▶ Many real phenomena can be described as developing with a
tree-like structure, for example
▶ Growth of cells.
▶ Spread of viruses or other pathogens in a population.
▶ Nuclear chain reactions.
▶ Spread of funny cat videos on the internet.
▶ Spread of a surname over generations.

▶ The process with which one node gives rise to “children” can be
described as random: We will assume the probabilistic properties of
this process is the same for all nodes.

▶ We will assume all nodes are organized into generations.

▶ We are only concerned with the size of each generation.

▶ How large are the generations? How much does the size vary? Will
the process become extinct?
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Branching processes

A branching process is discrete Markov chain Z0,Z1, . . . ,Zn, . . . where

▶ the state space is the non-negative integers

▶ Z0 = 1

▶ 0 is an absorbing state

▶ Zn is the sum X1 + X2 + · · ·+ XZn−1 , where the Xj are independent
random non-negative integers all with the same offspring
distribution. In other words

Zn =

Zn−1∑
i=1

Xi .

▶ Connecting each of the Zn individuals in generation n with their
offspring in generation n + 1 we get a tree illustrating the branching
process.

▶ The offspring distribution is described by the probability vector
a = (a0, a1, . . . , ) where aj = Pr (Xi = j).

▶ To focus on the interesting cases we assume a0 > 0 and a0 + a1 < 1.
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Expected generation size

▶ Note that the state 0 is absorbing: This absorbtion is called
extinction.

▶ As a0 > 0, all nonzero states are transient.
▶ Define µ = E (Xi ) =

∑∞
j=0 jaj (the expected number of children).

▶ Then we may compute that

E (Zn) = E

Zn−1∑
i=1

Xi

 = E

E

Zn−1∑
i=1

Xi | Zn−1

 = · · · = E (Zn−1)µ.

▶ We get directly that

E (Zn) = µn E (Z0) = µn

▶ We subdivide Branching processes into three types:
▶ Subcritical if µ < 1. Then limn→∞ E (Zn) = 0.
▶ Critical if µ = 1. Then limn→∞ E (Zn) = 1.
▶ Supercritical if µ > 1. Then limn→∞ E (Zn) = ∞.

▶ We can prove that if limn→∞ E (Zn) = 0 then the probability of
extinction is 1.
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Variance of the generation size

▶ Continue with µ = E (Xi ) denoting the expected number of children
and let σ2 = Var (Xi ) denote the variance of the number of children.

▶ Using the law of total variance, we get

Var (Zn) = Var (E (Zn | Zn−1)) + E (Var (Zn | Zn−1))

= Var

E

Zn−1∑
i=1

Xi | Zn−1

+ E

Var

Zn−1∑
i=1

Xi | Zn−1


= Var (µZn−1) + E

(
σ2Zn−1

)
= µ2 Var (Zn−1) + σ2µn−1

▶ From this we prove by induction, for n ≥ 1,

Var (Zn) = σ2µn−1
n−1∑
k=0

µk =

{
nσ2 if µ = 1
σ2µn−1(µn − 1)/(µ− 1) if µ ̸= 1
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Probability generating functions

▶ For any discrete random variable X taking values in {0, 1, 2, . . . , }
define the probability generating function G (s), or GX (s), as

G (s) = E
(
sX

)
=

∞∑
k=0

sk Pr (X = k) .

▶ The series converges absolutely for |s| ≤ 1. We assume s is a real
number in [0, 1].

▶ We get a 1-1 correspondence between probability vectors on
{0, 1, 2, . . . , } and functions represented by a series where the
non-negative coefficients sum to 1.

▶ Specifically, if GX (s) = GY (s) for all s for random variables X and
Y then X and Y have the same distribution.

▶ The correspondence of X with GX (s) provides an important and
surprisingly useful computational tool.
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What does GX (s) look like?

▶ GX (1) = 1 and GX (0) = Pr (X = 0).
▶ We get

G ′(s) =
∞∑
k=1

ksk−1 Pr (X = k) = E
(
XsX−1

)
G ′′(s) =

∞∑
k=2

k(k − 1)sk−2 Pr (X = k) = E
(
X (X − 1)sX−2

)
G ′′′(s) =

∞∑
k=3

k(k − 1)(k − 2)sk−3 Pr (X = k) = E
(
X (X − 1)(X − 2)sX−3

)
▶ So the derivatives are non-negative, and G ′(s) and G ′′(s) are

positive for s ∈ (0, 1).
▶ Below: GX (s) when X ∼ Binomial(10, 0.2). (Diagonal added)
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Some properties of probability generating functions

▶ To go from X to GX (s): Compute the infinite (or finite) sum.

▶ To go from GX (s) to X : Use that we have

P(X = j) =
G (j)(0)

j!
.

▶ If X and Y are independent,

GX+Y (s) = E
(
sX+Y

)
= E

(
sX sY

)
= E

(
sX

)
E
(
sY

)
= GX (s)GY (s)

▶ E (X ) = G ′(1)

▶ E (X (X − 1)) = G ′′(1).

▶ As a consequence, Var (X ) = G ′′(1) + G ′(1)− G ′(1)2.
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Probability generating functions for Branching processes

Assume we have a Branching process Z0,Z1, . . . , with independent
random variables X counting the offspring at each node.

▶ Write Gn(s) = GZn(s) = E
(
sZn

)
and G (s) = GXk

(s) = E
(
sXk

)
.

▶ We get

Gn(s) = E
(
s
∑Zn−1

k=1 Xk

)
= E

(
E
(
s
∑Zn−1

k=1 Xk | Zn−1

))
= E

E

Zn−1∏
k=1

sXk | Zn−1

 = E
(
G (s)Zn−1

)
= Gn−1(G (s)).

▶ As G0(s) = E
(
sZ0

)
= s, it follows that

Gn(s) = G (G (G (. . .G (s) . . . ))), with n iterations of the G function.

▶ This result can be applied numerically to compute Gn(s), but it is
even more important theoretically.
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Extinction probability theorem

THEOREM
▶ Let G be the probability generating function for the offspring

distribution for a branching process. The probability of eventual
extinction is the smallest positive root of the equation s = G (s).

▶ Thus in (subcritical and) critical cases the extinction probability is 1.

▶ Proof: Let en be the probability that the process is extinct in
generation n. Then

en = Pr (Zn = 0) = Gn(0) = G (Gn−1(0)) = G (Pr (Zn−1 = 0)) = G (en−1)

We get for the probability of extinction

e = lim
n→∞

en = lim
n→∞

G (en−1) = G ( lim
n→∞

en−1) = G (e)

so e is a root of G . Starting with any positive root x , we get
e0 = 0 < x and applying the increasing function G repeatedly on
both sides yields en < x , taking the limit yields e ≤ x .
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