Inference for the parameters of HMMs

Assume an HMM model where X; € {0,1}, Y; € {1, 2,3}, and we have

observed both states in some stretch of data:
Xjo0of(ojojof1y1|1j1f1]o0

Y|1|2|1|1]2|3]|2|3|3]|1

0|1 1123
» Counting transitions, weget 0 | 3| 1jand 0|4 |1 |0 |
1(1/4 110123

» In practice, we can use pseudocounts just as in the Markov chain
case. In the example above, using all pseudocounts equal to 1, we

get
p_ 4/6 2/6 Q- 5/8 2/8 1/8
- |2/7 5/7|°F |1/8 3/8 4/8
where P is the transition matrix of the Markov chain, and @ is the

stochastic matrix of transition probabilities from X; to Y;.

» As for Markov chains, these results can be obtained by using priors
for P and @ that are products of Dirichlet distributions.
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More on inference of parameters for HMMs

» The Bayesian paradigm may be used to make predictions for later
observations: In the example above, with Xp, ... Xo, Yo,... Yo
observed, the probability vector with the three possible values of Yiq
can be computed with the matrix product E (Py,) E(Q).

» The priors can be adapted to incorporate actual prior information.

» For example, prior knowledge about the transitions from states of X;
to states of Y; might lead you to model Y; ~ Poisson(\x;), so for
each value of X; the Y; are Poisson distributed with parameter \x;.
Fixing a prior also on the Ax. parameters, we may then find the
posteriors for these in similar ways as we have done before.
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More inference questions for HMMs (for information)

» We focused above on the case where (some) parameters of the
HMM are not fully known.

» If the HMM parameters are given and the Y; are observed, the goal
may instead be to learn about the values of the X; (these methods
are not part of the course):

» Find the sequence Xp, ..., Xk with the maximum probability given
the observed Yo, ..., Yk and the given model: The Viterbi algorithm.
» Find the marginal distribution for each X; given the observed
Yo, ..., Yk and the model: The Forward-Backward algorithm.
» Find the joint distribution of X, ..., Xk given the observed
Yo, ..., Yk and the model. In practice: Find a sequence Xo, ..., Xk

that is a sample from this joint distribution. This may also be done
with a Forward-Backward algorithm.
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Introduction

» Many real phenomena can be described as developing with a
tree-like structure, for example
> Growth of cells.
» Spread of viruses or other pathogens in a population.
» Nuclear chain reactions.
» Spread of funny cat videos on the internet.
» Spread of a surname over generations.

» The process with which one node gives rise to “children” can be
described as random: We will assume the probabilistic properties of
this process is the same for all nodes.

» We will assume all nodes are organized into generations.

v

We are only concerned with the size of each generation.

» How large are the generations? How much does the size vary? Will
the process become extinct?
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Branching processes

A branching process is discrete Markov chain 2y, Z1,...,Z,,... where

>

>
>
>

the state space is the non-negative integers
Zy=1
0 is an absorbing state

Z, is the sum X + Xo +--- + Xz, _,, where the X; are independent
random non-negative integers all with the same offspring
distribution. In other words

Zy_1
Z,=> X
i=1

Connecting each of the Z, individuals in generation n with their
offspring in generation n+ 1 we get a tree illustrating the branching
process.

The offspring distribution is described by the probability vector
a=(aop,ai,...,) where a; = Pr(X; = ).
To focus on the interesting cases we assume ag > 0 and ag + a; < 1.
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Expected generation size

|

Note that the state O is absorbing: This absorbtion is called
extinction.
As ap > 0, all nonzero states are transient.

Define = E(X;) = -2 jaj (the expected number of children).
Then we may compute that
Z,,_1 Zn—l
E(Z)=E(Y_X|=E[E(D_X|Z1]||=-=E(Zia)p
i=1 i=1

We get directly that
E(Zy) = u"E(Z) = p"

We subdivide Branching processes into three types:
» Subcritical if p < 1. Then lim,— E(Z,) = 0.
> Critical if 4 = 1. Then lim,— o E(Z,) = 1.
» Supercritical if p > 1. Then lim,— o E (Z,) = 0.
We can prove that if lim,_ E(Z,) = 0 then the probability of

extinction is 1.
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Variance of the generation size

» Continue with u = E(X;) denoting the expected number of children
and let 0> = Var (X;) denote the variance of the number of children.

» Using the law of total variance, we get

Var(Z,) = Var(E(Z,]| Z,—1)) +E(Var(Z, | Z,-1))
Zy1

= Var|E Zx,-|z,,,1 +E | Var Zx,-|zn,1
i i=1

— Var(uZn,l)—&—E(UQZn 1)
= p?Var(Z,_1) + o™t

» From this we prove by induction, for n > 1,

n if =1
Var (Z,) = o*p IZN—{ o2 (" — 1) /(e — 1) if//j#l
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Probability generating functions

» For any discrete random variable X taking values in {0,1,2,...,}
define the probability generating function G(s), or Gx(s), as

G(s)=E(sX) =) s"Pr(X=k).
k=0

> The series converges absolutely for |s| < 1. We assume s is a real
number in [0, 1].

> We get a 1-1 correspondence between probability vectors on
{0,1,2,...,} and functions represented by a series where the
non-negative coefficients sum to 1.

» Specifically, if Gx(s) = Gy(s) for all s for random variables X and
Y then X and Y have the same distribution.

» The correspondence of X with Gx(s) provides an important and
surprisingly useful computational tool.

9/13



What does Gx(s) look like?

» Gx(1) =1 and Gx(0) = Pr(X =0).

> We get
G'(s) = i ks* TPr(X = k) =E (xsx—l)
G"(s) = i k(k —1)s*2Pr(X = k) = E (X(X - 1)5’“2)
k=2
G"(s) = i k(k —1)(k —2)s* *Pr(X = k) =E (X(x —1)(X — 2)5X—3)

x
I
w

> So the derivatives are non-negative, and G’(s) and G"(s) are
positive for s € (0,1).
» Below: Gx(s) when X ~ Binomial(10,0.2). (Diagonal added)

00 02 04 06 08 10
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Some properties of probability generating functions

> To go from X to Gx(s): Compute the infinite (or finite) sum.
> To go from Gx(s) to X: Use that we have

» If X and Y are independent,
Gxiy(s) =E(s*TY) =E(s*sY) = E(s¥) E(s") = Gx(s)Gy(s)

> E(X) = G'(1)
> E(X(X —1)) = G"(1).
» As a consequence, Var (X) = G”(1) + G'(1) — G'(1)2.
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Probability generating functions for Branching processes

Assume we have a Branching process 2y, Z1, ..., with independent
random variables X counting the offspring at each node.

> Write G,(s) = Gz,(s) = E(s%) and G(s) = Gx,(s) = E (s).

> We get
Gu(s) = E (525111&) —E (E (525111)@ | Zn71>)
Zy1
= E|E[J]s®|2Z-1] | =E(G()"*) = Go1(G(5)).
k=1

> As Go(s) = E (s%) =s, it follows that
Gn(s) = G(G(G(...G(s)...))), with n iterations of the G function.

» This result can be applied numerically to compute G,(s), but it is
even more important theoretically.
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Extinction probability theorem

THEOREM
» Let G be the probability generating function for the offspring
distribution for a branching process. The probability of eventual
extinction is the smallest positive root of the equation s = G(s).
» Thus in (subcritical and) critical cases the extinction probability is 1.

» Proof: Let e, be the probability that the process is extinct in
generation n. Then

en = Pr(Z,=0) = G,(0) = G(G,-1(0)) = G(Pr(Z,—-1 =0)) = G(es—1)
We get for the probability of extinction

o= i e = lim Gle-) = G(fim e0-s) = 6(¢)
so e is a root of G. Starting with any positive root x, we get
eo = 0 < x and applying the increasing function G repeatedly on
both sides yields e, < x, taking the limit yields e < x.
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