Inference for the parameters of HMMs

Assume an HMM model where $X_{i} \in\{0,1\}, Y_{i} \in\{1,2,3\}$, and we have observed both states in some stretch of data:

X	0	0	0	0	1	1	1	1	1	0
Y	1	2	1	1	2	3	2	3	3	1

- Counting transitions, we get \begin{tabular}{l|l|l|}
\& 0 \& 1

\hline 0 \& 3 \& 1

\hline 1 \& 1 \& 4

\hline

 and

\& 1 \& 2 \& 3

\hline 0 \& 4 \& 1 \& 0

\hline 1 \& 0 \& 2 \& 3

\hline
\end{tabular}

- In practice, we can use pseudocounts just as in the Markov chain case. In the example above, using all pseudocounts equal to 1 , we get

$$
P=\left[\begin{array}{ll}
4 / 6 & 2 / 6 \\
2 / 7 & 5 / 7
\end{array}\right], Q=\left[\begin{array}{lll}
5 / 8 & 2 / 8 & 1 / 8 \\
1 / 8 & 3 / 8 & 4 / 8
\end{array}\right]
$$

where P is the transition matrix of the Markov chain, and Q is the stochastic matrix of transition probabilities from X_{i} to Y_{i}.

- As for Markov chains, these results can be obtained by using priors for P and Q that are products of Dirichlet distributions.

More on inference of parameters for HMMs

- The Bayesian paradigm may be used to make predictions for later observations: In the example above, with $X_{0}, \ldots X_{9}, Y_{0}, \ldots Y_{9}$ observed, the probability vector with the three possible values of Y_{10} can be computed with the matrix product $\mathrm{E}\left(P_{x_{9}}\right) \mathrm{E}(Q)$.
- The priors can be adapted to incorporate actual prior information.
- For example, prior knowledge about the transitions from states of X_{i} to states of Y_{i} might lead you to model $Y_{i} \sim \operatorname{Poisson}\left(\lambda_{x_{i}}\right)$, so for each value of X_{i} the Y_{i} are Poisson distributed with parameter $\lambda_{x_{i}}$. Fixing a prior also on the $\lambda_{X_{i}}$ parameters, we may then find the posteriors for these in similar ways as we have done before.

More inference questions for HMMs (for information)

- We focused above on the case where (some) parameters of the HMM are not fully known.
- If the HMM parameters are given and the Y_{i} are observed, the goal may instead be to learn about the values of the X_{i} (these methods are not part of the course):
- Find the sequence X_{0}, \ldots, X_{k} with the maximum probability given the observed Y_{0}, \ldots, Y_{k} and the given model: The Viterbi algorithm.
- Find the marginal distribution for each X_{i} given the observed Y_{0}, \ldots, Y_{k} and the model: The Forward-Backward algorithm.
- Find the joint distribution of X_{0}, \ldots, X_{k} given the observed Y_{0}, \ldots, Y_{k} and the model. In practice: Find a sequence X_{0}, \ldots, X_{k} that is a sample from this joint distribution. This may also be done with a Forward-Backward algorithm.

MVE550 2021 Lecture 6 Dobrow Chapter 4
 Introduction to branching processes
 Probability generating functions

Petter Mostad
Chalmers University

November 18, 2022

Introduction

- Many real phenomena can be described as developing with a tree-like structure, for example
- Growth of cells.
- Spread of viruses or other pathogens in a population.
- Nuclear chain reactions.
- Spread of funny cat videos on the internet.
- Spread of a surname over generations.
- The process with which one node gives rise to "children" can be described as random: We will assume the probabilistic properties of this process is the same for all nodes.
- We will assume all nodes are organized into generations.
- We are only concerned with the size of each generation.
- How large are the generations? How much does the size vary? Will the process become extinct?

Branching processes

A branching process is discrete Markov chain $Z_{0}, Z_{1}, \ldots, Z_{n}, \ldots$ where
the state space is the non-negative integers

- $Z_{0}=1$
- 0 is an absorbing state
- Z_{n} is the sum $X_{1}+X_{2}+\cdots+X_{Z_{n-1}}$, where the X_{j} are independent random non-negative integers all with the same offspring distribution. In other words

$$
Z_{n}=\sum_{i=1}^{Z_{n-1}} x_{i}
$$

- Connecting each of the Z_{n} individuals in generation n with their offspring in generation $n+1$ we get a tree illustrating the branching process.
- The offspring distribution is described by the probability vector $a=\left(a_{0}, a_{1}, \ldots,\right)$ where $a_{j}=\operatorname{Pr}\left(X_{i}=j\right)$.
- To focus on the interesting cases we assume $a_{0}>0$ and $a_{0}+a_{1}<1$.

Expected generation size

- Note that the state 0 is absorbing: This absorbtion is called extinction.
- As $a_{0}>0$, all nonzero states are transient.
- Define $\mu=\mathrm{E}\left(X_{i}\right)=\sum_{j=0}^{\infty} j a_{j}$ (the expected number of children).
- Then we may compute that

$$
\mathrm{E}\left(Z_{n}\right)=\mathrm{E}\left(\sum_{i=1}^{Z_{n-1}} X_{i}\right)=\mathrm{E}\left(\mathrm{E}\left(\sum_{i=1}^{Z_{n-1}} X_{i} \mid Z_{n-1}\right)\right)=\cdots=\mathrm{E}\left(Z_{n-1}\right) \mu
$$

- We get directly that

$$
\mathrm{E}\left(Z_{n}\right)=\mu^{n} \mathrm{E}\left(Z_{0}\right)=\mu^{n}
$$

- We subdivide Branching processes into three types:
- Subcritical if $\mu<1$. Then $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=0$.
- Critical if $\mu=1$. Then $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=1$.
- Supercritical if $\mu>1$. Then $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=\infty$.
- We can prove that if $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{n}\right)=0$ then the probability of extinction is 1 .

Variance of the generation size

- Continue with $\mu=\mathrm{E}\left(X_{i}\right)$ denoting the expected number of children and let $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$ denote the variance of the number of children.
- Using the law of total variance, we get

$$
\begin{aligned}
\operatorname{Var}\left(Z_{n}\right) & =\operatorname{Var}\left(\mathrm{E}\left(Z_{n} \mid Z_{n-1}\right)\right)+\mathrm{E}\left(\operatorname{Var}\left(Z_{n} \mid Z_{n-1}\right)\right) \\
& =\operatorname{Var}\left(\mathrm{E}\left(\sum_{i=1}^{Z_{n-1}} X_{i} \mid Z_{n-1}\right)\right)+\mathrm{E}\left(\operatorname{Var}\left(\sum_{i=1}^{Z_{n-1}} X_{i} \mid Z_{n-1}\right)\right) \\
& =\operatorname{Var}\left(\mu Z_{n-1}\right)+\mathrm{E}\left(\sigma^{2} Z_{n-1}\right) \\
& =\mu^{2} \operatorname{Var}\left(Z_{n-1}\right)+\sigma^{2} \mu^{n-1}
\end{aligned}
$$

- From this we prove by induction, for $n \geq 1$,

$$
\operatorname{Var}\left(Z_{n}\right)=\sigma^{2} \mu^{n-1} \sum_{k=0}^{n-1} \mu^{k}= \begin{cases}n \sigma^{2} & \text { if } \mu=1 \\ \sigma^{2} \mu^{n-1}\left(\mu^{n}-1\right) /(\mu-1) & \text { if } \mu \neq 1\end{cases}
$$

Probability generating functions

- For any discrete random variable X taking values in $\{0,1,2, \ldots$, define the probability generating function $G(s)$, or $G_{X}(s)$, as

$$
G(s)=\mathrm{E}\left(s^{X}\right)=\sum_{k=0}^{\infty} s^{k} \operatorname{Pr}(X=k) .
$$

- The series converges absolutely for $|s| \leq 1$. We assume s is a real number in $[0,1]$.
- We get a 1-1 correspondence between probability vectors on $\{0,1,2, \ldots$,$\} and functions represented by a series where the$ non-negative coefficients sum to 1 .
- Specifically, if $G_{X}(s)=G_{Y}(s)$ for all s for random variables X and Y then X and Y have the same distribution.
- The correspondence of X with $G_{X}(s)$ provides an important and surprisingly useful computational tool.

What does $G_{X}(s)$ look like?

- $G_{X}(1)=1$ and $G_{X}(0)=\operatorname{Pr}(X=0)$.
- We get

$$
\begin{aligned}
G^{\prime}(s) & =\sum_{k=1}^{\infty} k s^{k-1} \operatorname{Pr}(X=k)=\mathrm{E}\left(X s^{x-1}\right) \\
G^{\prime \prime}(s) & =\sum_{k=2}^{\infty} k(k-1) s^{k-2} \operatorname{Pr}(X=k)=\mathrm{E}\left(X(X-1) s^{X-2}\right) \\
G^{\prime \prime \prime}(s) & =\sum_{k=3}^{\infty} k(k-1)(k-2) s^{k-3} \operatorname{Pr}(X=k)=\mathrm{E}\left(X(X-1)(X-2) s^{X-3}\right)
\end{aligned}
$$

- So the derivatives are non-negative, and $G^{\prime}(s)$ and $G^{\prime \prime}(s)$ are positive for $s \in(0,1)$.
- Below: $G_{X}(s)$ when $X \sim \operatorname{Binomial}(10,0.2)$. (Diagonal added)

Some properties of probability generating functions

- To go from X to $G_{X}(s)$: Compute the infinite (or finite) sum.
- To go from $G_{X}(s)$ to X : Use that we have

$$
P(X=j)=\frac{G^{(j)}(0)}{j!}
$$

- If X and Y are independent,

$$
G_{X+Y}(s)=\mathrm{E}\left(s^{X+Y}\right)=\mathrm{E}\left(s^{X} s^{Y}\right)=\mathrm{E}\left(s^{X}\right) \mathrm{E}\left(s^{Y}\right)=G_{X}(s) G_{Y}(s)
$$

- $\mathrm{E}(X)=G^{\prime}(1)$
- $\mathrm{E}(X(X-1))=G^{\prime \prime}(1)$.
- As a consequence, $\operatorname{Var}(X)=G^{\prime \prime}(1)+G^{\prime}(1)-G^{\prime}(1)^{2}$.

Probability generating functions for Branching processes

Assume we have a Branching process Z_{0}, Z_{1}, \ldots, with independent random variables X counting the offspring at each node.

- Write $G_{n}(s)=G_{Z_{n}}(s)=\mathrm{E}\left(s^{Z_{n}}\right)$ and $G(s)=G_{X_{k}}(s)=\mathrm{E}\left(s^{X_{k}}\right)$.
- We get

$$
\begin{aligned}
G_{n}(s) & =\mathrm{E}\left(s^{\Sigma_{k=1}^{Z_{n-1}} x_{k}}\right)=\mathrm{E}\left(\mathrm{E}\left(s^{\sum_{k=1}^{Z_{n-1}} x_{k}} \mid Z_{n-1}\right)\right) \\
& =\mathrm{E}\left(\mathrm{E}\left(\prod_{k=1}^{Z_{n-1}} s^{X_{k}} \mid Z_{n-1}\right)\right)=\mathrm{E}\left(G(s)^{Z_{n-1}}\right)=G_{n-1}(G(s)) .
\end{aligned}
$$

- As $G_{0}(s)=E\left(s^{Z_{0}}\right)=s$, it follows that $G_{n}(s)=G(G(G(\ldots G(s) \ldots)))$, with n iterations of the G function.
- This result can be applied numerically to compute $G_{n}(s)$, but it is even more important theoretically.

Extinction probability theorem

THEOREM

- Let G be the probability generating function for the offspring distribution for a branching process. The probability of eventual extinction is the smallest positive root of the equation $s=G(s)$.
- Thus in (subcritical and) critical cases the extinction probability is 1 .
- Proof: Let e_{n} be the probability that the process is extinct in generation n. Then

$$
e_{n}=\operatorname{Pr}\left(Z_{n}=0\right)=G_{n}(0)=G\left(G_{n-1}(0)\right)=G\left(\operatorname{Pr}\left(Z_{n-1}=0\right)\right)=G\left(e_{n-1}\right)
$$

We get for the probability of extinction

$$
e=\lim _{n \rightarrow \infty} e_{n}=\lim _{n \rightarrow \infty} G\left(e_{n-1}\right)=G\left(\lim _{n \rightarrow \infty} e_{n-1}\right)=G(e)
$$

so e is a root of G. Starting with any positive root x, we get $e_{0}=0<x$ and applying the increasing function G repeatedly on both sides yields $e_{n}<x$, taking the limit yields $e \leq x$.

