MVE550 2021 Lecture 7 Dobrow Sections 5.1 - 5.4

Petter Mostad

Chalmers University

November 22, 2022

The limiting distribution as target distribution

- ▶ So far: Start with a Markov chain, learn what happens when the number of steps approaches ∞ .
- ▶ We now turn this on its head: Start with defining a limiting distribution, call it the "target distribution", then derive a Markov chain with this limiting distribution.
- Purpose: If we sample the Markov chain for sufficiently many steps, we know that we have an approximate sample from our target distribution.
- This is useful in situations where we need a sample, but sampling directly is difficult.

Markov chain Monte Carlo (MCMC) as an inference tool

- ▶ In many cases, for example Bayesian inference, our goal can be formulated as computing E(X) for some random variable X.
- ▶ If we can generate a sample from X, we can approximate the expectation as an average.
- ► Often we can instead get an approximate sample by using a Markov chain, as in the previous overhead.
- ► This method to compute E(X) is called Markov chain Monte Carlo (MCMC).

Is an approximate sample good enough?

Strong law of large numbers for samples: If Y_1, Y_2, \ldots, Y_m and Y are i.i.d. random variables from a distribution with finite mean, and if r is a bounded function, then, with probability 1,

$$\lim_{m\to\infty}\frac{r(Y_1)+r(Y_2)+\cdots+r(Y_m)}{m}=\mathsf{E}[r(Y)]$$

Strong law of large numbers for Markov chains: If X_0, X_1, \ldots , is an ergodic Markov chain with stationary distribution π , and if r is a bounded function, then, with probability 1,

$$\lim_{m\to\infty}\frac{r(X_1)+r(X_2)+\cdots+r(X_m)}{m}=\mathsf{E}[r(X)]$$

where X has the stationary distribution π .

- ▶ Note that this holds not only for Markov chains with discrete state spaces, but also for Markov chains of continuous random variables (which we will look at later).
- NOTE: When using this theorem in practice, one might improve accuracy by throwing away the first sequence X_1, \ldots, X_s for s < m before computing the average. This first sequence is called the *burn-in*.

Toy example

▶ Consider the Markov chain $X_0, X_1, ...$ with states $\{0, 1, 2\}$ and with

$$P = \begin{bmatrix} 0.99 & 0.01 & 0 \\ 0 & 0.9 & 0.1 \\ 0.2 & 0 & 0.8 \end{bmatrix}.$$

Using theory from Chapter 3 we get that the limiting distribution is v = (20/23, 2/23, 1/23).

► Consider the function $r(x) = x^5$. If X is a random variable with the limiting distribution,

$$E(r(X)) = 0^5 \cdot \frac{20}{23} + 1^5 \cdot \frac{2}{23} + 2^5 \cdot \frac{1}{23} = \frac{33}{23} = 1.4348$$

▶ If $Y_1, ..., Y_n$ are all i.i.d. variables with the limiting distribution, we can check numerically (see R code) that

$$\lim_{n\to\infty}\frac{r(Y_1)+\cdots+r(Y_n)}{n}=1.4348$$

▶ We also get (see R code), for $X_0, X_1, ...,$ that

$$\lim_{n\to\infty}\frac{r(X_1)+\cdots+r(X_n)}{n}=1.4348$$

but in this case the limit is approached more slowly.

Less toy-ish example: "Good" sequences

Consider sequences of length m consisting of 0's and 1's.

- ▶ A sequence is called "good" if if contains no consecutive 1's.
- \blacktriangleright What is the average number of 1's in good sequences of length m?
- Brute force computation will not work.
- Direct computation is possible, but not obvious how to do.
- ► Efficient direct simulation of a sample of good sequences is not obvious how to do, when *m* is, say, above 100.
- We construct a random walk on a weighted graph with nodes consisting of all good sequences (fixed m) so that
 - Two good sequences are neighbours when the differ at exactly one position. The weight of edge connecting them is 1.
 - Each good sequence has an edge connecting it to itself, with weight so that the total weights of edges going out from the sequence is m.
 - ▶ Then the limiting distribution is the uniform distribution.
 - ► Thus we can estimate the solution by counting 1's in sequences generated by the Markov chain, and then take the average.
 - ► This is both easy to program and gives efficient and accurate results.

The Metropolis Hastings algorithm

If we start with a particular distribution, can we construct a Markov chain with that as the limiting distribution?

- Let θ be a discrete random variable with probability mass function $\pi(\theta)$.
- ▶ We also assume given a *proposal distribution* $q(\theta_{new} \mid \theta)$, which, for every given θ , provides a probability mass function for a new θ_{new} .
- ▶ Finally, define, for θ and θ_{new} , the acceptance probability

$$a = \min \left(1, rac{\pi(heta_{new})q(heta \mid heta_{new})}{\pi(heta)q(heta_{new} \mid heta)}
ight)$$

- The Metropolis Hastings algorithm is: Starting with some initial value θ_0 , generate $\theta_1, \theta_2, \ldots$ by, at each step, proposing a new θ based on the old using the proposal function and accepting it with probability a. If it is not accepted, the old value is used again.
- If this defines an ergodic Markov chain, its unique stationary distribution is $\pi(\theta)$ (Proof below).

The Metropolis Hastings algorithm, continued

NOTES:

- ▶ The density $\pi(\theta)$ only needs to be known up to a constant.
- ▶ If the proposal function is symmetric, i.e., $q(\theta \mid \theta_{new}) = q(\theta_{new} \mid \theta)$ for all θ and θ_{new} , then q disappears in the formula for the acceptance probaility a.
- The computations for good sequences is an example, with $\pi(\theta)$ uniform and q the random walk, so that $q(\theta \mid \theta_{new}) = q(\theta_{new} \mid \theta)$.
- ▶ Unless the distribution $\pi(\theta)$ is *positive*, remark 4 in Dobrow page 188 does NOT hold. If $\pi(\theta)$ is not positive, ergodicity of the Metropolis Hastings Markov chain needs to be checked separately, even if the proposal Markov chain is ergodic.

Proof that MH algorithm works

- In fact, we will show that the Metropolis Hastings chain fulfills the detailed balance condition relative to $\pi(\theta)$. Thus it is time reversible and if it is ergodic it will have $\pi(\theta)$ as its limiting distribution.
- Let $T(\theta_{i+1} \mid \theta_i)$ be the transition function for the MH Markov chain. Assume $\theta_{i+1} \neq \theta_i$, and

$$rac{\pi(heta_{i+1})q(heta_i\mid heta_{i+1})}{\pi(heta_i)q(heta_{i+1}\mid heta_i)}\leq 1$$

Then

$$\pi(\theta_i) T(\theta_{i+1} \mid \theta_i) = \pi(\theta_i) q(\theta_{i+1} \mid \theta_i) \frac{\pi(\theta_{i+1}) q(\theta_i \mid \theta_{i+1})}{\pi(\theta_i) q(\theta_{i+1} \mid \theta_i)}$$
$$= \pi(\theta_{i+1}) q(\theta_i \mid \theta_{i+1}) = \pi(\theta_{i+1}) T(\theta_i \mid \theta_{i+1}),$$

the last step because, with assumption above, $\frac{\pi(\theta_i)q(\theta_{i+1}|\theta_i)}{\pi(\theta_{i+1})q(\theta_i|\theta_{i+1})} \geq 1$

We get a similar computation when the opposite inequality holds.

The Ising model

- ▶ Uses a grid of vertices; we will assume an $n \times n$ grid. Two vertices v and w are *neighbours*, denoted $v \sim w$, if they are next to each other in the grid.
- ► Each vertex v can have value +1 or -1 (called its "spin"); we denote this by $\sigma_v = 1$ or $\sigma_v = -1$.
- A configuration σ consists of a choice of +1 or -1 for each vertex: Thus the set Ω of possible configurations has $2^{(n^2)}$ elements.
- We define the *energy* of a configuration as $E(\sigma) = -\sum_{v \sim w} \sigma_v \sigma_w$.
- lacktriangle The Gibbs distribution is the probability density on Ω defined by

$$\pi(\sigma) \propto_{\sigma} \exp(-\beta E(\sigma))$$

where β is a parameter of the model; $1/\beta$ is called the *temperature*.

It turns out that when the temperature is high, samples from the model will show a chaotic pattern of spins, but when the temperature sinks below the *phase transition* value, in our case $1/\beta = 2/\log(1+\sqrt{2})$, samples will show chunks of neighbouring vertices with the same spin; the system will be "magnetized".

Simulating from the Ising model using Metropolis Hastings

- ▶ For a vertex configuration σ and a vertex v let σ_{-v} denote the part of σ that does not involve v.
- Propose a new configuration σ^* given an old configuration σ by first choosing a vertex v, then, let σ^* be identical to σ except possibly at v: Decide the spin at v using the conditional distribution given σ_{-v} :

$$\pi(\sigma_{v} = 1 \mid \sigma_{-v}) = \frac{\pi(\sigma_{v} = 1, \sigma_{-v})}{\pi(\sigma_{-v})} = \frac{\pi(\sigma_{v} = 1, \sigma_{-v})}{\pi(\sigma_{v} = 1, \sigma_{-v}) + \pi(\sigma_{v} = -1, \sigma_{-v})}$$

$$= \frac{1}{1 + \frac{\pi(\sigma_{v} = -1, \sigma_{-v})}{\pi(\sigma_{v} = 1, \sigma_{-v})}} = \frac{1}{1 + \exp(-\beta E(\sigma_{v} = -1, \sigma_{-v}) + \beta E(\sigma_{v} = 1, \sigma_{-v}))}$$

$$= \frac{1}{1 + \exp(\beta \sum_{v \sim w} \sigma_{v} \sigma_{w} \mid_{\sigma_{v} = -1} - \beta \sum_{v \sim w} \sigma_{v} \sigma_{w} \mid_{\sigma_{v} = 1})}$$

$$= \frac{1}{1 + \exp(-2\beta \sum_{v \sim w} \sigma_{w})}.$$

As $\sigma_{-\nu} = \sigma_{-\nu}^*$ we get $\frac{\pi(\sigma^*)q(\sigma|\sigma^*)}{\pi(\sigma)q(\sigma^*|\sigma)} = \frac{\pi(\sigma_{\nu}^*|\sigma_{-\nu}^*)\pi(\sigma_{-\nu}^*)\pi(\sigma_{\nu}^*|\sigma_{-\nu}^*)}{\pi(\sigma_{\nu}|\sigma_{-\nu})\pi(\sigma_{-\nu})\pi(\sigma_{\nu}^*|\sigma_{-\nu}^*)} = 1$ so the acceptance probability is always 1!

Gibbs sampling

- In the Ising model, the states can be written as a vector $\sigma = (\sigma_1, \ldots, \sigma_{n^2})$ of components or coordinates. We used a proposal function which changed only one coordinate and simulated its new value using the conditional distribution given the remaining coordinates.
- ▶ For any probability model over a vector $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ we can do the same: The proposal function changes only one coordinate, and the value of this coordinate is simulated with the conditional distribution given the remaining coordinates. The proof that the acceptance probability is 1 is unchanged!
- This is called Gibbs sampling.
- Note that we may choose the coordinate to change in various ways, as long as the resulting Markov chain becomes ergodic.
- In the Ising model, the conditional distributions $\pi(\theta_k \mid \theta_{-k})$ are easy to derive and simulate from, and this may often be the case. In such cases, Gibbs sampling is an easy-to-use version of Metropolis Hastings.

Knowing convergence has been reached: Perfect sampling

Given ergodic Markov chain with finite sample space of size k and limiting distribution π .

- ▶ Idea: Given n, prove that X_n actually has reached the limit distribution.
- Method: Prove that the distribution at X_n is independent of the starting value at X_0 .
- ► How: Construct k Markov chains that are dependent ("coupled") but which are marginally Markov chains as above. If they start at the k possible values at X₀ but have identical values at X_n, we are done.
- Note: *n cannot* be determined as the first value where the *k* chains meet; it must be determined independently of such information!
- ▶ Thus usually one wants to generate chains $X_{-n}, X_{-n+1}, \ldots, X_0$ where X_0 has the limiting distribution, and we stepwise increase n to make all chains *coalesce* to one chain.

Using same source of randomness for all k chains

Consider the chains $X_{-n}^{(j)}, \ldots, X_0^{(j)}$ for $j = 1, \ldots, k$.

- ▶ Instead of simulating $X_{i+1}^{(j)}$ based on $X_i^{(j)}$ independently for each j, we define a function g so that $X_{i+1}^{(j)} = g(X_i^{(j)}, U_i)$ for all j, where $U_i \sim \text{Uniform}(0, 1)$.
- ▶ Thus if two chains have identical values in X_i , they will also be identical at X_{i+1} .
- ► See Figure 5.10 in Dobrow.
- ▶ Thus, for a particular n, if all chains have not converged at X_0 , we simulate k chains from X_{-2n} to X_{-n} : They might only hit a subset of the k states at X_{-n} and thus might coalesce to one state at X_0 , using the old simulations. If not, double n again.

Monotonicity

- ▶ Do we need to keep track of all k chains?
- We define a *partial ordering* on a set as a relation $x \le y$ between *some* pairs x and y in the set, such that:
 - If $x \le y$ and $y \le x$ then x = y.
 - ▶ If $x \le y$ and $y \le z$ then $x \le z$ (in fact we don't need this).
- We will need that our partial ordering has a minimal element (an m such that $m \le x$ for all x) and a maximal element (an M such that $x \le M$ for all x).
- If we have a partial ordering on the state space of the Markov chain, and if $x \le y$ implies $g(x, U) \le g(y, U)$, then g is monotone.
- ▶ We can then prove that we only need to keep track of the chain starting at *m* and the chain starting at *M*!

Example: Perfect simulation from the Ising model

- ▶ Given an Ising model with $\beta > 0$.
- ightharpoonup Define partial ordering on Ω (the set of all configurations) as follows

$$\sigma \leq \tau$$
 if $\sigma_{\nu} \leq \tau_{\nu}$ for all vertices ν

- ▶ We have a minimal and a maximal configuration (all -1's and +1's, respectively).
- We can arrange for g, the updating of chains, to be monotone: Assuming $\sigma \leq \tau$,

$$\Pr\left(\sigma_{v} = 1 \mid \sigma_{-v}\right) = \frac{1}{1 + \exp(-2\beta \sum_{v \sim w} \sigma_{w})} \leq \frac{1}{1 + \exp(-2\beta \sum_{v \sim w} \tau_{w})} = \Pr\left(\tau_{v} = 1 \mid \tau_{-v}\right).$$

So perfect simulation from the Ising model proceeds as follows: Start one chain m at all -1's and one chain M at all +1's. Cycle through the vertices and compute the conditional probabilities p_m and p_M of +1 at that vertex. We know that $p_m \leq p_M$. Simulate $U \sim \text{Uniform}(0,1)$. If $U < p_m$ set $\sigma_v = -1$ for both chains, and if $U > p_M$ set $\sigma_v = +1$ for both chains. Otherwise set $\sigma_v = +1$ for the M chain and $\sigma_v = -1$ for the m chain. Determine coalescence as above.