Given ergodic Markov chain with finite sample space of size k and limiting distribution $\pi.$

- When using this setup for MCMC, the goal is to get a sample from π .
- Perfect sampling: Simulating from the chain, we prove that the last simulated value actually has distribution π.
- If we start k chains from the k different states, and they all end up in the same state, we have *forgotten* the initial state, and have reached the limiting distribution.
- Coupling: Simulate so that if two chains have identical states at step *i*, they are also identical at step i + 1 (they *coalesce*): Use function $X_{i+1}^{(j)} = g(X_i^{(j)}, U_i)$ where $U_i \sim \text{Uniform}(0, 1)$.
- Length of simulation must be decided independently of values! Simulate by extending backwards!

- Do we need to keep track of all k chains?
- ▶ We define a *partial ordering* on a set as a relation x ≤ y between some pairs x and y in the set, such that:
 - If $x \leq y$ and $y \leq x$ then x = y.
 - If $x \le y$ and $y \le z$ then $x \le z$ (in fact we don't use this).
- We will need that our partial ordering has a minimal element (an m such that m ≤ x for all x) and a maximal element (an M such that x ≤ M for all x).
- If we have a partial ordering on the state space of the Markov chain, and if x ≤ y implies g(x, U) ≤ g(y, U), then g is monotone.
- ▶ We can then prove that we only need to keep track of the chain starting at *m* and the chain starting at *M*!

Example: Perfect simulation from the Ising model

• Given an Ising model with $\beta > 0$.

• Define partial ordering on Ω (the set of all configurations) as follows

 $\sigma \leq \tau$ if $\sigma_v \leq \tau_v$ for all vertices v

- We have a minimal and a maximal configuration (all -1's and +1's, respectively).
- We can arrange for g, the updating of chains, to be monotone: Assuming $\sigma \leq \tau$,

$$\Pr\left(\sigma_{\nu}=1 \mid \sigma_{-\nu}\right) = \frac{1}{1 + \exp\left(-2\beta \sum_{\nu \sim w} \sigma_{w}\right)} \leq \frac{1}{1 + \exp\left(-2\beta \sum_{\nu \sim w} \tau_{w}\right)} = \Pr\left(\tau_{\nu}=1 \mid \tau_{-\nu}\right).$$

So perfect simulation from the Ising model proceeds as follows: Start one chain *m* at all -1's and one chain *M* at all +1's. Cycle through the vertices. Compute the conditional probabilities p_m and p_M of +1 at each vertex. We know that $p_m \leq p_M$. Simulate $U \sim \text{Uniform}(0, 1)$. If $U < p_m$ set $\sigma_v = -1$ for both chains, and if $U > p_M$ set $\sigma_v = +1$ for both chains. Otherwise set $\sigma_v = +1$ for the *M* chain and $\sigma_v = -1$ for the *m* chain. Determine coalescence as above. MVE550 2022 Lecture 8 Compendium chapters 4 and 5 Inference for Branching processes. MCMC for Bayesian inference

Petter Mostad

Chalmers University

November 24, 2022

Bayesian inference for Branching processes

- Say you have observed some data, and you want to find a branching process (of the type discussed in Dobrow) that appropriately models the data, to then make predictions. How?
- ► A branching process is characterized by the probability vector a = (a₀, a₁, a₂,...,) where a_i is the probability for *i* offspring in the offspring process.
- Let y_1, y_2, \ldots, y_n be the counts of offspring in *n* observations of the offspring process. If *a* is given we have the likelihood

$$\pi(y_1,\ldots,y_n\mid a)=\prod_{i=1}^n a_{y_i}$$

- ▶ To complete the model, we need a prior on *a*.
- As a has infinite length and we have a finite number of observations, we need to put information from the context into the prior, to get a sensible posterior.

▶ We will look at alternatives where you either decide that a_i = 0 for i ≥ m for some m, or where the offspring distribution has a particular parametric form.

Using a Binomial likelihood

Assume the offspring process is Binomial(N, p) for some parameter p and a fixed known N. We get the likelihood

$$\pi(y_1,\ldots,y_n \mid p) = \prod_{i=1}^n \text{Binomial}(y_i; N, p).$$

A possibility is to use a prior p ~ Beta(α, β). Writing S = ∑ⁿ_{i=1} y_i we get the posterior

 $p \mid \text{data} \sim \text{Beta}(\alpha + S, \beta + nN - S).$

More generally, if π(p) = f(p) for any positive function integrating to 1 on [0, 1], we get

 $\pi(p \mid \mathsf{data}) \propto_p \mathsf{Beta}(p; 1 + S, 1 + nN - S)f(p)$

We can then for example compute numerically the posterior probability that the branching process is supercritical, i.e., that Pr (p > 1/N | data), with (see R computations)

$$\int_{1/N}^{1} \pi(p \mid \text{data}) \, dp = \frac{\int_{1/N}^{1} \text{Beta}(1+S, 1+nN-S)f(p) \, dp}{\int_{0}^{1} \text{Beta}(1+S, 1+nN-S)f(p) \, dp}$$

Using a Multinomial likelihood

Assume there is a maximum of N offspring and that now $p = (p_0, p_1, \dots, p_N)$ is an unknown probability vector so that p_i is the probability of *i* offspring. We get the likelihood

 $\pi(y_1,\ldots,y_n \mid p) \propto_p \mathsf{Multinomial}(c;p)$

where $c = (c_0, \ldots, c_N)$ is the vector of counts in the data of cases with $0, \ldots, N$ offspring, respectively.

If we use the prior p ~ Dirichlet(α) where α = (α₀,..., α_N) is a vector of pseudocounts, we get

 $p \mid \mathsf{data} \sim \mathsf{Dirichlet}(\alpha + c).$

Note that Dirichlet(1,...,1) corresponds to the uniform distribution. Using this prior, we get the posterior expectation for p

$$\mathsf{E}\left(p\mid\mathsf{data}\right)=\frac{c+(1,1,\ldots,1)}{n+N+1}.$$

We can simulate from the posterior to investigate for example the probability of being supercritical.

► A discrete time continuous state space Markov chain is a sequence

 X_0, X_1, \ldots

of continuous random variables with the property that, for all n > 0,

 $\pi(X_{n+1} \mid X_0, X_1, \ldots, X_n) = \pi(X_{n+1} \mid X_n)$

- We work with time-homogeneous Markov chains, so that the *density* $\pi(X_{n+1} | X_n)$ is the same for all *n*.
- Ergodicity is defined in a similar way as for discrete state space chains: The chain needs to be irreducible, aperiodic, and positive recurrent.
- The fundamental limit theorem for ergodic Markov chains holds: In the limit as n → ∞, the chain approaches a unique positive stationary distribution.

Markov chain Monte Carlo (MCMC) with continuous variables

- The Metropolis Hastings algorithm is defined as before, except that the proposal distribution q(θ_{new} | θ) is now a probability density, not a probability mass function.
- Exactly as before, the limiting distribution of the Metropolis Hastings Markov chain is the target distribution, as long as the Markov chain is ergodic.
- The strong law of large numbers also extends to this situation.
- Markov chain Monte Carlo (MCMC) is making the approximation

$$\mathsf{E}_{\pi}\left(r(heta)
ight) pprox rac{1}{N}\sum_{i=1}^{N}r(heta_{i})$$

where $\theta_1, \ldots, \theta_N$ is a realization of steps from the Metropolis Hastings Markov chain with the distribution π as its target.

We have some data y_1, \ldots, y_n and we want to make a probability prediction for y_{new} .

• We (often) define a parameter θ , and a probabilistic model so that

$$\pi(y_1,\ldots,y_n,y_{new},\theta) = \left[\prod_{i=1}^n \pi(y_i \mid \theta)\right] \pi(y_{new} \mid \theta) \pi(\theta)$$

Thus

$$\pi(y_{new} \mid y_1, \dots, y_n) = \int_{\theta} \pi(y_{new} \mid \theta) \pi(\theta \mid y_1, \dots, y_n) d\theta$$
$$= \mathsf{E}_{\theta \mid y_1, \dots, y_n} (\pi(y_{new} \mid \theta))$$

Bayesian inference with MCMC, cont.

Often when the dimension of θ is reasonably high:

We use Metropolis Hastings (MH) to generate an approximate sample θ₁,..., θ_N from π(θ | y₁,..., y_n) and approximate

$$\pi(y_{new} \mid y_1, \dots, y_n) \approx \frac{1}{N} \sum_{i=1}^N \pi(y_{new} \mid \theta_i)$$

- We may also simulate from $\pi(y_{new} | y_1, \dots, y_n)$ by simulating the $\theta_1, \dots, \theta_N$ as above and then from $\pi(y_{new} | \theta_1), \dots, \pi(y_{new} | \theta_N)$.
- Note that the acceptance probabiliby in MH may in our case be written

$$a = \min\left(1, \frac{\pi(y_1, \dots, y_n \mid \theta^*)\pi(\theta^*)q(\theta \mid \theta^*)}{\pi(y_1, \dots, y_n \mid \theta)\pi(\theta)q(\theta^* \mid \theta)}\right)$$

where θ^* is the proposed value based on θ .

Old example from compendium Chapter 1:

$$y \mid p \sim Binomial(17, p)$$

 $p \sim Beta(2.3, 4.1)$
 $y_{new} \mid p \sim Binomial(3, p)$

- We would like to compute $Pr(y_{new} = 1 | y = 4)$.
- In this toy example we can do so
 - directly, using conjugacy
 - using discretization
 - using numerical integration
- ► As an illustration (see R) we may also use MCMC.

Example

▶ We have observed the data (*x_i*, *y_i*):

(2, 0.32), (3, 0.57), (4, 0.61), (6, 0.83), (9, 0.91)

- The context gives us the following model
 - We expect the data to follow y = f(x, θ₁) = exp(θ₁x)-1/exp(θ₁x)+1 where θ₁ is an unknown parameter.
 - We have observed the data with added noise Normal(0, θ²₂) where θ₂ is an unknown parameter.
 - We assume a flat prior on $\theta_1 > 0$ and $\theta_2 > 0$.
- We get the posterior

$$\pi(\theta \mid \mathsf{data}) \propto_{\theta} \prod_{i=1}^{5} \mathsf{Normal}(y_i; f(x_i, \theta_1), \theta_2^2).$$

• Use MCMC to simulate from the value of y when x = 10 (see R).