Perfect sampling: Review from last time

Given ergodic Markov chain with finite sample space of size k and limiting distribution π.

- When using this setup for MCMC, the goal is to get a sample from π.
- Perfect sampling: Simulating from the chain, we prove that the last simulated value actually has distribution π.
- If we start k chains from the k different states, and they all end up in the same state, we have forgotten the initial state, and have reached the limiting distribution.
- Coupling: Simulate so that if two chains have identical states at step i, they are also identical at step $i+1$ (they coalesce): Use function $X_{i+1}^{(j)}=g\left(X_{i}^{(j)}, U_{i}\right)$ where $U_{i} \sim \operatorname{Uniform}(0,1)$.
- Length of simulation must be decided independently of values! Simulate by extending backwards!

Monotonicity

- Do we need to keep track of all k chains?
- We define a partial ordering on a set as a relation $x \leq y$ between some pairs x and y in the set, such that:
- If $x \leq y$ and $y \leq x$ then $x=y$.
- If $x \leq y$ and $y \leq z$ then $x \leq z$ (in fact we don't use this).
- We will need that our partial ordering has a minimal element (an m such that $m \leq x$ for all x) and a maximal element (an M such that $x \leq M$ for all x).
- If we have a partial ordering on the state space of the Markov chain, and if $x \leq y$ implies $g(x, U) \leq g(y, U)$, then g is monotone.
- We can then prove that we only need to keep track of the chain starting at m and the chain starting at M !

Example: Perfect simulation from the Ising model

- Given an Ising model with $\beta>0$.
- Define partial ordering on Ω (the set of all configurations) as follows

$$
\sigma \leq \tau \text { if } \sigma_{v} \leq \tau_{v} \text { for all vertices } v
$$

- We have a minimal and a maximal configuration (all -1 's and +1 's, respectively).
- We can arrange for g, the updating of chains, to be monotone: Assuming $\sigma \leq \tau$,
$\operatorname{Pr}\left(\sigma_{v}=1 \mid \sigma_{-v}\right)=\frac{1}{1+\exp \left(-2 \beta \sum_{v \sim w} \sigma_{w}\right)} \leq \frac{1}{1+\exp \left(-2 \beta \sum_{v \sim w} \tau_{w}\right)}=\operatorname{Pr}\left(\tau_{v}=1 \mid \tau_{-v}\right)$.
- So perfect simulation from the Ising model proceeds as follows: Start one chain m at all -1 's and one chain M at all +1 's. Cycle through the vertices. Compute the conditional probabilities p_{m} and p_{M} of +1 at each vertex. We know that $p_{m} \leq p_{M}$. Simulate $U \sim \operatorname{Uniform}(0,1)$. If $U<p_{m}$ set $\sigma_{v}=-1$ for both chains, and if $U>p_{M}$ set $\sigma_{v}=+1$ for both chains. Otherwise set $\sigma_{v}=+1$ for the M chain and $\sigma_{v}=-1$ for the m chain. Determine coalescence as above.

MVE550 2022 Lecture 8
 Compendium chapters 4 and 5
 Inference for Branching processes. MCMC for
 Bayesian inference

Petter Mostad
Chalmers University

November 24, 2022

Bayesian inference for Branching processes

- Say you have observed some data, and you want to find a branching process (of the type discussed in Dobrow) that appropriately models the data, to then make predictions. How?
- A branching process is characterized by the probability vector $a=\left(a_{0}, a_{1}, a_{2}, \ldots,\right)$ where a_{i} is the probabilty for i offspring in the offspring process.
- Let $y_{1}, y_{2}, \ldots, y_{n}$ be the counts of offspring in n observations of the offspring process. If a is given we have the likelihood

$$
\pi\left(y_{1}, \ldots, y_{n} \mid a\right)=\prod_{i=1}^{n} a_{y_{i}}
$$

- To complete the model, we need a prior on a.
- As a has infinite length and we have a finite number of observations, we need to put information from the context into the prior, to get a sensible posterior.
- We will look at alternatives where you either decide that $a_{i}=0$ for $i \geq m$ for some m, or where the offspring distribution has a particular parametric form.

Using a Binomial likelihood

- Assume the offspring process is $\operatorname{Binomial}(N, p)$ for some parameter p and a fixed known N. We get the likelihood

$$
\pi\left(y_{1}, \ldots, y_{n} \mid p\right)=\prod_{i=1}^{n} \operatorname{Binomial}\left(y_{i} ; N, p\right)
$$

- A possibility is to use a prior $p \sim \operatorname{Beta}(\alpha, \beta)$. Writing $S=\sum_{i=1}^{n} y_{i}$ we get the posterior

$$
p \mid \text { data } \sim \operatorname{Beta}(\alpha+S, \beta+n N-S)
$$

- More generally, if $\pi(p)=f(p)$ for any positive function integrating to 1 on $[0,1]$, we get

$$
\pi(p \mid \text { data }) \propto_{p} \operatorname{Beta}(p ; 1+S, 1+n N-S) f(p)
$$

- We can then for example compute numerically the posterior probability that the branching process is supercritical, i.e., that $\operatorname{Pr}(p>1 / N \mid$ data $)$, with (see R computations)

$$
\int_{1 / N}^{1} \pi(p \mid \text { data }) d p=\frac{\int_{1 / N}^{1} \operatorname{Beta}(1+S, 1+n N-S) f(p) d p}{\int_{0}^{1} \operatorname{Beta}(1+S, 1+n N-S) f(p) d p}
$$

Using a Multinomial likelihood

- Assume there is a maximum of N offspring and that now $p=\left(p_{0}, p_{1}, \ldots, p_{N}\right)$ is an unknown probability vector so that p_{i} is the probability of i offspring. We get the likelihood

$$
\pi\left(y_{1}, \ldots, y_{n} \mid p\right) \propto_{p} \text { Multinomial }(c ; p)
$$

where $c=\left(c_{0}, \ldots, c_{N}\right)$ is the vector of counts in the data of cases with $0, \ldots, N$ offspring, respectively.

- If we use the prior $p \sim \operatorname{Dirichlet}(\alpha)$ where $\alpha=\left(\alpha_{0}, \ldots, \alpha_{N}\right)$ is a vector of pseudocounts, we get

$$
p \mid \text { data } \sim \text { Dirichlet }(\alpha+c)
$$

- Note that Dirichlet $(1, \ldots, 1)$ corresponds to the uniform distribution. Using this prior, we get the posterior expectation for p

$$
\mathrm{E}(p \mid \text { data })=\frac{c+(1,1, \ldots, 1)}{n+N+1}
$$

- We can simulate from the posterior to investigate for example the probability of being supercritical.

Continuous variable Markov chains

- A discrete time continuous state space Markov chain is a sequence

$$
X_{0}, X_{1}, \ldots
$$

of continuous random variables with the property that, for all $n>0$,

$$
\pi\left(X_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right)=\pi\left(X_{n+1} \mid X_{n}\right)
$$

- We work with time-homogeneous Markov chains, so that the density $\pi\left(X_{n+1} \mid X_{n}\right)$ is the same for all n.
- Ergodicity is defined in a similar way as for discrete state space chains: The chain needs to be irreducible, aperiodic, and positive recurrent.
- The fundamental limit theorem for ergodic Markov chains holds: In the limit as $n \rightarrow \infty$, the chain approaches a unique positive stationary distribution.

Markov chain Monte Carlo (MCMC) with continuous variables

- The Metropolis Hastings algorithm is defined as before, except that the proposal distribution $q\left(\theta_{\text {new }} \mid \theta\right)$ is now a probability density, not a probability mass function.
- Exactly as before, the limiting distribution of the Metropolis Hastings Markov chain is the target distribution, as long as the Markov chain is ergodic.
- The strong law of large numbers also extends to this situation.
- Markov chain Monte Carlo (MCMC) is making the approximation

$$
\mathrm{E}_{\pi}(r(\theta)) \approx \frac{1}{N} \sum_{i=1}^{N} r\left(\theta_{i}\right)
$$

where $\theta_{1}, \ldots, \theta_{N}$ is a realization of steps from the Metropolis Hastings Markov chain with the distribution π as its target.

Bayesian inference with MCMC

We have some data y_{1}, \ldots, y_{n} and we want to make a probability prediction for $y_{\text {new }}$.

- We (often) define a parameter θ, and a probabilistic model so that

$$
\pi\left(y_{1}, \ldots, y_{n}, y_{\text {new }}, \theta\right)=\left[\prod_{i=1}^{n} \pi\left(y_{i} \mid \theta\right)\right] \pi\left(y_{\text {new }} \mid \theta\right) \pi(\theta)
$$

- Thus

$$
\begin{aligned}
\pi\left(y_{\text {new }} \mid y_{1}, \ldots, y_{n}\right) & =\int_{\theta} \pi\left(y_{\text {new }} \mid \theta\right) \pi\left(\theta \mid y_{1}, \ldots, y_{n}\right) d \theta \\
& =\mathrm{E}_{\theta \mid y_{1}, \ldots, y_{n}}\left(\pi\left(y_{\text {new }} \mid \theta\right)\right)
\end{aligned}
$$

Bayesian inference with MCMC, cont.

Often when the dimension of θ is reasonably high:

- We use Metropolis Hastings (MH) to generate an approximate sample $\theta_{1}, \ldots, \theta_{N}$ from $\pi\left(\theta \mid y_{1}, \ldots, y_{n}\right)$ and approximate

$$
\pi\left(y_{\text {new }} \mid y_{1}, \ldots, y_{n}\right) \approx \frac{1}{N} \sum_{i=1}^{N} \pi\left(y_{\text {new }} \mid \theta_{i}\right)
$$

- We may also simulate from $\pi\left(y_{\text {new }} \mid y_{1}, \ldots, y_{n}\right)$ by simulating the $\theta_{1}, \ldots, \theta_{N}$ as above and then from $\pi\left(y_{\text {new }} \mid \theta_{1}\right), \ldots, \pi\left(y_{\text {new }} \mid \theta_{N}\right)$.
- Note that the acceptance probabiliby in MH may in our case be written

$$
a=\min \left(1, \frac{\pi\left(y_{1}, \ldots, y_{n} \mid \theta^{*}\right) \pi\left(\theta^{*}\right) q\left(\theta \mid \theta^{*}\right)}{\pi\left(y_{1}, \ldots, y_{n} \mid \theta\right) \pi(\theta) q\left(\theta^{*} \mid \theta\right)}\right) .
$$

where θ^{*} is the proposed value based on θ.

Toy example

- Old example from compendium Chapter 1:

$$
\begin{aligned}
y \mid p & \sim \operatorname{Binomial}(17, p) \\
p & \sim \operatorname{Beta}(2.3,4.1) \\
y_{\text {new }} \mid p & \sim \operatorname{Binomial}(3, p)
\end{aligned}
$$

- We would like to compute $\operatorname{Pr}\left(y_{\text {new }}=1 \mid y=4\right)$.
- In this toy example we can do so
- directly, using conjugacy
- using discretization
- using numerical integration
- As an illustration (see R) we may also use MCMC.

Example

- We have observed the data $\left(x_{i}, y_{i}\right)$:

$$
(2,0.32),(3,0.57),(4,0.61),(6,0.83),(9,0.91)
$$

- The context gives us the following model
- We expect the data to follow $y=f\left(x, \theta_{1}\right)=\frac{\exp \left(\theta_{1} \times\right)-1}{\exp \left(\theta_{1} x\right)+1}$ where θ_{1} is an unknown parameter.
- We have observed the data with added noise $\operatorname{Normal}\left(0, \theta_{2}^{2}\right)$ where θ_{2} is an unknown parameter.
- We assume a flat prior on $\theta_{1}>0$ and $\theta_{2}>0$.
- We get the posterior

$$
\pi(\theta \mid \text { data }) \propto_{\theta} \prod_{i=1}^{5} \operatorname{Normal}\left(y_{i} ; f\left(x_{i}, \theta_{1}\right), \theta_{2}^{2}\right)
$$

- Use MCMC to simulate from the value of y when $x=10$ (see R).

