
Perfect sampling: Review from last time

Given ergodic Markov chain with finite sample space of size k and
limiting distribution π.

▶ When using this setup for MCMC, the goal is to get a sample from
π.

▶ Perfect sampling: Simulating from the chain, we prove that the last
simulated value actually has distribution π.

▶ If we start k chains from the k different states, and they all end up
in the same state, we have forgotten the initial state, and have
reached the limiting distribution.

▶ Coupling: Simulate so that if two chains have identical states at step
i , they are also identical at step i + 1 (they coalesce): Use function

X
(j)
i+1 = g(X

(j)
i ,Ui ) where Ui ∼ Uniform(0, 1).

▶ Length of simulation must be decided independently of values!
Simulate by extending backwards!
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Monotonicity

▶ Do we need to keep track of all k chains?

▶ We define a partial ordering on a set as a relation x ≤ y between
some pairs x and y in the set, such that:
▶ If x ≤ y and y ≤ x then x = y .
▶ If x ≤ y and y ≤ z then x ≤ z (in fact we don’t use this).

▶ We will need that our partial ordering has a minimal element (an m
such that m ≤ x for all x) and a maximal element (an M such that
x ≤ M for all x).

▶ If we have a partial ordering on the state space of the Markov chain,
and if x ≤ y implies g(x ,U) ≤ g(y ,U), then g is monotone.

▶ We can then prove that we only need to keep track of the chain
starting at m and the chain starting at M!
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Example: Perfect simulation from the Ising model

▶ Given an Ising model with β > 0.
▶ Define partial ordering on Ω (the set of all configurations) as follows

σ ≤ τ if σv ≤ τv for all vertices v

▶ We have a minimal and a maximal configuration (all -1’s and +1’s,
respectively).

▶ We can arrange for g , the updating of chains, to be monotone:
Assuming σ ≤ τ ,

Pr (σv = 1 | σ−v ) =
1

1 + exp(−2β
∑

v∼w σw )
≤

1

1 + exp(−2β
∑

v∼w τw )
= Pr (τv = 1 | τ−v ) .

▶ So perfect simulation from the Ising model proceeds as follows:
Start one chain m at all -1’s and one chain M at all +1’s. Cycle
through the vertices. Compute the conditional probabilities pm and
pM of +1 at each vertex. We know that pm ≤ pM . Simulate
U ∼ Uniform(0, 1). If U < pm set σv = −1 for both chains, and if
U > pM set σv = +1 for both chains. Otherwise set σv = +1 for
the M chain and σv = −1 for the m chain. Determine coalescence
as above.
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Bayesian inference for Branching processes

▶ Say you have observed some data, and you want to find a branching
process (of the type discussed in Dobrow) that appropriately models
the data, to then make predictions. How?

▶ A branching process is characterized by the probability vector
a = (a0, a1, a2, . . . , ) where ai is the probabilty for i offspring in the
offspring process.

▶ Let y1, y2, . . . , yn be the counts of offspring in n observations of the
offspring process. If a is given we have the likelihood

π(y1, . . . , yn | a) =
n∏

i=1

ayi

▶ To complete the model, we need a prior on a.
▶ As a has infinite length and we have a finite number of observations,

we need to put information from the context into the prior, to get a
sensible posterior.

▶ We will look at alternatives where you either decide that ai = 0 for
i ≥ m for some m, or where the offspring distribution has a
particular parametric form.
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Using a Binomial likelihood

▶ Assume the offspring process is Binomial(N, p) for some parameter
p and a fixed known N. We get the likelihood

π(y1, . . . , yn | p) =
n∏

i=1

Binomial(yi ;N, p).

▶ A possibility is to use a prior p ∼ Beta(α, β). Writing S =
∑n

i=1 yi
we get the posterior

p | data ∼ Beta(α+ S , β + nN − S).

▶ More generally, if π(p) = f (p) for any positive function integrating
to 1 on [0, 1], we get

π(p | data) ∝p Beta(p; 1 + S , 1 + nN − S)f (p)

▶ We can then for example compute numerically the posterior
probability that the branching process is supercritical, i.e., that
Pr (p > 1/N | data), with (see R computations)∫ 1

1/N

π(p | data) dp =

∫ 1

1/N
Beta(1 + S , 1 + nN − S)f (p) dp∫ 1

0
Beta(1 + S , 1 + nN − S)f (p) dp
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Using a Multinomial likelihood

▶ Assume there is a maximum of N offspring and that now
p = (p0, p1, . . . , pN) is an unknown probability vector so that pi is
the probability of i offspring. We get the likelihood

π(y1, . . . , yn | p) ∝p Multinomial(c ; p)

where c = (c0, . . . , cN) is the vector of counts in the data of cases
with 0, . . . ,N offspring, respectively.

▶ If we use the prior p ∼ Dirichlet(α) where α = (α0, . . . , αN) is a
vector of pseudocounts, we get

p | data ∼ Dirichlet(α+ c).

▶ Note that Dirichlet(1, . . . , 1) corresponds to the uniform
distribution. Using this prior, we get the posterior expectation for p

E (p | data) = c + (1, 1, . . . , 1)

n + N + 1
.

▶ We can simulate from the posterior to investigate for example the
probability of being supercritical.
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Continuous variable Markov chains

▶ A discrete time continuous state space Markov chain is a sequence

X0,X1, . . .

of continuous random variables with the property that, for all n > 0,

π(Xn+1 | X0,X1, . . . ,Xn) = π(Xn+1 | Xn)

▶ We work with time-homogeneous Markov chains, so that the density
π(Xn+1 | Xn) is the same for all n.

▶ Ergodicity is defined in a similar way as for discrete state space
chains: The chain needs to be irreducible, aperiodic, and positive
recurrent.

▶ The fundamental limit theorem for ergodic Markov chains holds: In
the limit as n → ∞, the chain approaches a unique positive
stationary distribution.
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Markov chain Monte Carlo (MCMC) with continuous
variables

▶ The Metropolis Hastings algorithm is defined as before, except that
the proposal distribution q(θnew | θ) is now a probability density, not
a probability mass function.

▶ Exactly as before, the limiting distribution of the Metropolis
Hastings Markov chain is the target distribution, as long as the
Markov chain is ergodic.

▶ The strong law of large numbers also extends to this situation.

▶ Markov chain Monte Carlo (MCMC) is making the approximation

Eπ (r(θ)) ≈
1

N

N∑
i=1

r(θi )

where θ1, . . . , θN is a realization of steps from the Metropolis
Hastings Markov chain with the distribution π as its target.
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Bayesian inference with MCMC

We have some data y1, . . . , yn and we want to make a probability
prediction for ynew .

▶ We (often) define a parameter θ, and a probabilistic model so that

π(y1, . . . , yn, ynew , θ) =

[
n∏

i=1

π(yi | θ)

]
π(ynew | θ)π(θ)

▶ Thus

π(ynew | y1, . . . , yn) =

∫
θ

π(ynew | θ)π(θ | y1, . . . , yn) dθ

= Eθ|y1,...,yn (π(ynew | θ))
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Bayesian inference with MCMC, cont.

Often when the dimension of θ is reasonably high:

▶ We use Metropolis Hastings (MH) to generate an approximate
sample θ1, . . . , θN from π(θ | y1, . . . , yn) and approximate

π(ynew | y1, . . . , yn) ≈
1

N

N∑
i=1

π(ynew | θi )

▶ We may also simulate from π(ynew | y1, . . . , yn) by simulating the
θ1, . . . , θN as above and then from π(ynew | θ1), . . . , π(ynew | θN).

▶ Note that the acceptance probabiliby in MH may in our case be
written

a = min

(
1,

π(y1, . . . , yn | θ∗)π(θ∗)q(θ | θ∗)
π(y1, . . . , yn | θ)π(θ)q(θ∗ | θ)

)
.

where θ∗ is the proposed value based on θ.
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Toy example

▶ Old example from compendium Chapter 1:

y | p ∼ Binomial(17, p)

p ∼ Beta(2.3, 4.1)

ynew | p ∼ Binomial(3, p)

▶ We would like to compute Pr (ynew = 1 | y = 4).

▶ In this toy example we can do so
▶ directly, using conjugacy
▶ using discretization
▶ using numerical integration

▶ As an illustration (see R) we may also use MCMC.
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Example

▶ We have observed the data (xi , yi ):

(2, 0.32), (3, 0.57), (4, 0.61), (6, 0.83), (9, 0.91)

▶ The context gives us the following model
▶ We expect the data to follow y = f (x , θ1) =

exp(θ1x)−1
exp(θ1x)+1

where θ1 is an
unknown parameter.

▶ We have observed the data with added noise Normal(0, θ22) where θ2
is an unknown parameter.

▶ We assume a flat prior on θ1 > 0 and θ2 > 0.

▶ We get the posterior

π(θ | data) ∝θ

5∏
i=1

Normal(yi ; f (xi , θ1), θ
2
2).

▶ Use MCMC to simulate from the value of y when x = 10 (see R).
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