Perfect sampling: Review from last time

Given ergodic Markov chain with finite sample space of size k and
limiting distribution .

» When using this setup for MCMC, the goal is to get a sample from
.

» Perfect sampling: Simulating from the chain, we prove that the last
simulated value actually has distribution 7.

> If we start k chains from the k different states, and they all end up
in the same state, we have forgotten the initial state, and have
reached the limiting distribution.

» Coupling: Simulate so that if two chains have identical states at step
i, they are also identical at step i + 1 (they coalesce): Use function
X,-(J’r)1 = g(X,-U), U;) where U; ~ Uniform(0, 1).

» Length of simulation must be decided independently of values!
Simulate by extending backwards!
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» Do we need to keep track of all k chains?
» We define a partial ordering on a set as a relation x < y between
some pairs x and y in the set, such that:
> Ifx<yandy<xthen x=y.
> If x <y andy < zthen x < z (in fact we don't use this).
> We will need that our partial ordering has a minimal element (an m
such that m < x for all x) and a maximal element (an M such that
x < M for all x).
» If we have a partial ordering on the state space of the Markov chain,
and if x <y implies g(x, U) < g(y, U), then g is monotone.
» We can then prove that we only need to keep track of the chain
starting at m and the chain starting at M!
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Example: Perfect simulation from the Ising model

Given an Ising model with g > 0.
Define partial ordering on Q (the set of all configurations) as follows

o <rtifo, <, for all vertices v

We have a minimal and a maximal configuration (all -1's and +1's,
respectively).
We can arrange for g, the updating of chains, to be monotone:
Assuming o < T,

1 1

Priov=1lo-,) = 1+exp(—283, ., 0w) < 1+exp(—283, ., Tw)

=Pr(rn=1]7_-,).

So perfect simulation from the Ising model proceeds as follows:
Start one chain m at all -1's and one chain M at all +1's. Cycle
through the vertices. Compute the conditional probabilities p,, and
pm of +1 at each vertex. We know that p,, < py. Simulate

U ~ Uniform(0,1). If U < pp, set 0, = —1 for both chains, and if
U > py set o, = +1 for both chains. Otherwise set o, = +1 for
the M chain and o, = —1 for the m chain. Determine coalescence

as above.
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Bayesian inference for Branching processes

» Say you have observed some data, and you want to find a branching
process (of the type discussed in Dobrow) that appropriately models
the data, to then make predictions. How?

» A branching process is characterized by the probability vector
a = (ag, a1, a2, ..., ) where a; is the probabilty for i offspring in the
offspring process.

» Let y1,¥s,...,Ys be the counts of offspring in n observations of the
offspring process. If a is given we have the likelihood

n
71—(ylv"',y" | a) = Hay,-
i=1

» To complete the model, we need a prior on a.
» As a has infinite length and we have a finite number of observations,
we need to put information from the context into the prior, to get a
sensible posterior.
> We will look at alternatives where you either decide that a; = 0 for
i > m for some m, or where the offspring distribution has a
particular parametric form.
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Using a Binomial likelihood

» Assume the offspring process is Binomial(N, p) for some parameter
p and a fixed known N. We get the likelihood

(1, ¥n | p) = | | Binomial(y; N, p).
i=1
> A possibility is to use a prior p ~ Beta(a, ). Writing S="7_, yi
we get the posterior
p | data ~ Beta(a + S, 8+ nN — S).

» More generally, if m(p) = f(p) for any positive function integrating
to 1 on [0, 1], we get

m(p | data) o<, Beta(p; 14+ S, 1+ nN — S)f(p)

» We can then for example compute numerically the posterior
probability that the branching process is supercritical, i.e., that
Pr(p > 1/N | data), with (see R computations)

1
/1 r(p | data) dp = f1//v Beta(1+ S,1+ nN — S)f(p) dp
1/N fol Beta(1+ S,1+ nN — S)f(p) dp
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Using a Multinomial likelihood

» Assume there is a maximum of N offspring and that now
p = (po, P1,---,Pn) is an unknown probability vector so that p; is
the probability of i offspring. We get the likelihood

(Y1, -, ¥n | P) Xp Multinomial(c; p)

where ¢ = (¢, ..., cn) is the vector of counts in the data of cases
with 0, ..., N offspring, respectively.

» If we use the prior p ~ Dirichlet(a) where @ = (o, ..., an) is a
vector of pseudocounts, we get

p | data ~ Dirichlet(a + ¢).

» Note that Dirichlet(1,...,1) corresponds to the uniform
distribution. Using this prior, we get the posterior expectation for p

c+(1,1,...,1)

Elpldata) = — 3

» We can simulate from the posterior to investigate for example the
probability of being supercritical.
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Continuous variable Markov chains

» A discrete time continuous state space Markov chain is a sequence
Xo, X1, . ..
of continuous random variables with the property that, for all n > 0,
T(Xot1 | Xo, X1, oo, Xn) = 7(Xng1 | Xa)

» We work with time-homogeneous Markov chains, so that the density
m(Xny1 | Xn) is the same for all n.

» Ergodicity is defined in a similar way as for discrete state space
chains: The chain needs to be irreducible, aperiodic, and positive
recurrent.

» The fundamental limit theorem for ergodic Markov chains holds: In
the limit as n — oo, the chain approaches a unique positive
stationary distribution.
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Markov chain Monte Carlo (MCMC) with continuous

variables

» The Metropolis Hastings algorithm is defined as before, except that
the proposal distribution g(fhew | 6) is now a probability density, not
a probability mass function.

» Exactly as before, the limiting distribution of the Metropolis
Hastings Markov chain is the target distribution, as long as the
Markov chain is ergodic.

» The strong law of large numbers also extends to this situation.
» Markov chain Monte Carlo (MCMC) is making the approximation

- (r(0) = 7 D2 (0)

where 601, ...,0y is a realization of steps from the Metropolis
Hastings Markov chain with the distribution 7 as its target.
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Bayesian inference with MCMC

We have some data yi,..., ¥, and we want to make a probability
prediction for ypey .

> We (often) define a parameter 6, and a probabilistic model so that

(Y1, -3 Yn Ynew,0) = lH (i | 0)] T(Ynew | 0)7(6)
i=1

» Thus

7T(ynew | Yiy--- 7yn) = /QW(Ynew | 9)77(9 | Yiy--- 7yn) df

= E9|}’1,~-,}/n (Tr(ynew ‘ 0))
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Bayesian inference with MCMC, cont.

Often when the dimension of 6 is reasonably high:

» We use Metropolis Hastings (MH) to generate an approximate
sample 61, ...,0n from 7(6 | y1,...,y,) and approximate

N
7T(ynew |y13"'7.yn % Z ynew ‘ 0

> We may also simulate from m(Vnew | Y1,---,¥n) by simulating the
01,...,0n as above and then from 7(Yaew | 61)s-- s T(Vnew | On).

» Note that the acceptance probabiliby in MH may in our case be
written

- (1 T(y1s. o,y | 07)m(6%)q(0 | 9*)) .
Dy yn | 0)T(0)a(07 | 0)

where 0% is the proposed value based on 6.

11/13



Toy example

» Old example from compendium Chapter 1:

y|p ~ Binomial(17,p)
p ~ Beta(2.3,4.1)
Ynew | P~ Binomial(3, p)

» We would like to compute Pr(ypew = 11|y = 4).
» In this toy example we can do so

> directly, using conjugacy

» using discretization

> using numerical integration

» As an illustration (see R) we may also use MCMC.
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» \We have observed the data (x;, y;):

(2,0.32),(3,0.57), (4,0.61), (6,0.83), (9,0.91)

» The context gives us the following model

> We expect the data to follow y = f(x,6:) = % where 6; is an
unknown parameter.

> We have observed the data with added noise Normal(0, 63) where 6,
is an unknown parameter.

» We assume a flat prior on 6; > 0 and 6> > 0.
» We get the posterior

5
(0 | data) o H Normal(y;; f(xi, 61),63).

i=1

» Use MCMC to simulate from the value of y when x = 10 (see R).
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