# MVE550 2022 Lecture 9 Poisson Processes <br> Dobrow sections 6.1-6.5 

Petter Mostad

Chalmers University
November 28, 2022

## Where are we?

- In the beginning of the course, we defined a stochastic process as a collection $\left\{X_{t}, t \in I\right\}$ of random variables with a common state space $S$.
- So far, the set $I$ has been the non-negative integers. We now move on to processes where $/$ is a non-countable set, for example all positive real numbers, or all subsets of $\mathbb{R}^{2}$.
- Chapters 6 and 7 of Dobrow concern such stochastic processes where the state space $S$ is discrete.
- In Chapter 8 of Dobrow we look at the situation when the random variables $X_{t}$ are continuous variables.


## Poisson distributions and Poisson processes

- A random variable with values $0,1,2, \ldots$ with a Poisson distribution can be used to model the count of events happening independently, within some time interval.
- We have seen that if $X \sim \operatorname{Poisson}(\lambda)$ then $\pi(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$ and $\mathrm{E}(X)=\lambda, \operatorname{Var}(X)=\lambda$.
- A Poisson process models not only the count for a specific time interval, but also the exact time of every event.


## Counting processes

- A counting process $\left\{N_{t}, t \in I\right\}$ is a stochastic process where $I=\mathbb{R}_{0}^{+}$, where the state space is the non-negative integers, and where $0 \leq s \leq t$ implies $N_{s} \leq N_{t}$.
- Informally, when $s<t, N_{t}-N_{s}$ counts the number of "events" in ( $s, t]$.
- A realization of $N_{t}$ is a function of $t$ that is a right-continuous step function.


## Poisson process: Definition 1

- A Poisson process $\left\{N_{t}\right\}_{t \geq 0}$ with parameter $\lambda>0$ is a counting process fulfilling
- $N_{0}=0$.
- $N_{t} \sim \operatorname{Poisson}(\lambda t)$ for all $t>0$.
- Stationary increments: $N_{t+s}-N_{s}$ has the same distribution as $N_{t}$ for all $s>0, t>0$.
- Independent increments: $N_{t}-N_{s}$ and $N_{r}-N_{q}$ are independent, when $0 \leq q<r \leq s<t$.
- Note: Not obvious that such a process exists.
$\rightarrow$ Note: $\mathrm{E}\left(N_{t}\right)=\lambda t$. Thus what one is counting occurs with a rate of $\lambda$ items per time unit.


## Review: The exponential distribution

A random variable $X$ with non-negative values as possible values has an exponential distribution with parameter $\lambda$ if the density is

$$
\pi(x)=\lambda e^{-\lambda x}
$$

The cumulative probability distribution is

$$
F(x)=1-e^{-\lambda x} .
$$

The expectation is $\frac{1}{\lambda}$. The variance is $\frac{1}{\lambda^{2}}$.

## Memorylessness of the exponential distribution

- A random variable $X$ is called memoryless if

$$
P(X>s+t \mid X>s)=P(X>t)
$$

for all $s>0, t>0$.

- The exponential distribution is memoryless, and is the only memoryless continuous random variable.
- Consider the consequences of this when using the exponential as a model!


## Poisson process: Definition 2

- Definition 2: Let $X_{1}, X_{2}, \ldots$, be a sequence of iid exponential random variables with parmeter $\lambda$. Define $N_{0}=0$ and, for $t>0$,

$$
N_{t}=\max \left\{n: X_{1}+\cdots+X_{n} \leq t\right\} .
$$

Then $\left\{N_{t}\right\}_{t \geq 0}$ is a Poisson process with parameter $\lambda$.

- We have seen: If we start with a Poisson process (def. 1) and let $X_{1}, X_{2}, \ldots$ be inter-arrival times, then they are independent exponentially distributed and $N_{t}$ is given as above.
- Conversely, if we construct $N_{t}$ as above, all properties of definition 1 are easily proved except that $N_{t} \sim$ Poisson $(\lambda t)$ : We discuss this below.
- The definition provides an easy way to simulate a Poisson process.
- We call $S_{n}=X_{1}+\cdots+X_{n}$ the arrival times of the process.


## Minimum and sum of independent exponentially distributed variables

- Define $M=\min \left(X_{1}, \ldots, X_{n}\right)$ where, independently for each $i$, $X_{i} \sim \operatorname{Exponential}\left(\lambda_{i}\right)$. Then:
- $M \sim$ Exponential $\left(\lambda_{1}+\cdots+\lambda_{n}\right)$.
- $P\left(M=X_{k}\right)=\frac{\lambda_{k}}{\lambda_{1}+\cdots+\lambda_{n}}$.
- We will prove in an exercise: Let $S_{n}=X_{1}+\cdots+X_{n}$ where, independently for each $i, X_{i} \sim \operatorname{Exponential}(\lambda)$. Then $S_{n} \sim \operatorname{Gamma}(n, \lambda)$.
- Using the distribution of $S_{n}$, one can complete the proof that a process defined with "Definition 2" is a Poisson process:

$$
\operatorname{Pr}\left(N_{t}=k\right)=\operatorname{Pr}\left(S_{k} \leq t, S_{k}+X_{k+1}>t\right)=\cdots=\frac{e^{-\lambda t}(\lambda t)^{k}}{k!}
$$

## Poisson process: Definition 3



- Plot shows, for each $t$, the probabilities of observing $0,1 \ldots$ events: Derivatives of all curves at 0 are 0 except for the first curve.
- Third definition: A Poisson process $\left\{N_{t}\right\}_{t \geq 0}$ with parameter $\lambda$ is a couting process fulfilling
- $N_{0}=0$.
- The process has stationary and independent increments.

$$
\begin{aligned}
& P\left(N_{h}=0\right)=1-\lambda h+o(h) \\
& P\left(N_{h}=1\right)=\lambda h+o(h) \\
& P\left(N_{h}>1\right)=o(h)
\end{aligned}
$$

- All the three definitions of a Poission process are equivalent.


## Example

At a hospital, births occur at a rate $\lambda$. For each birth there is a probability $p=0.52$ that the child is a boy. The situation can be modelled in two ways:

- The counts $c_{1}$ of boys and $c_{2}$ of girls are modelled with two independent Poisson processes, $\left(N_{t}^{(1)}\right)_{t \geq 0}$ and $\left(N_{t}^{(2)}\right)_{t \geq 0}$, with parameters $\lambda p$ and $\lambda(1-p)$, respectively.
- The total number of births $N$ is modelled with one Poisson process $\left(N_{t}\right)_{t \geq 0}$ and counts are then Binomially distributed given $N$ :

$$
c_{1} \sim \operatorname{Binomial}(N ; p) \quad c_{2}=N-c_{1}
$$

- Luckily, we can prove that these ways of modelling are equivalent.


## Superposition and thinning

- LEMMA ${ }^{1}$ : Let $\left(N_{t}^{(1)}\right)_{t \geq 0}, \ldots,\left(N_{t}^{(n)}\right)_{t \geq 0}$ be independent Poisson processes with parameters $\lambda p_{1}, \ldots, \lambda p_{n}$, respectively, where $p=\left(p_{1}, \ldots, p_{n}\right)$ is a probability vector. If $c=\left(c_{1}, \ldots, c_{n}\right)$ are the counts after time $t$ (so that $c_{i}=N_{t}^{(i)}$ ), an equivalent model is

$$
c \sim \operatorname{Multinomial}(N, p)
$$

where $\left(N_{t}\right)_{t \geq 0}$ is a Poisson process with parameter $\lambda$.

- Proof on next page.
- Starting with one Poisson process and creating another by independently selecting arrivals with probability $p$ and considering only those is called thinning.
- Starting with several independent Poisson processes and considering their joint counts is called superposition.

[^0]
## Proof

- Using the model with independent Poisson processes, the probability of observing the count vector $c$ after time $t$ is (writing $\left.N=c_{1}+\cdots+c_{n}\right)$

$$
\begin{aligned}
& \prod_{i=1}^{n} \operatorname{Poisson}\left(c_{i} ; \lambda p_{i} t\right)=\prod_{i=1}^{n} e^{-\lambda p_{i} t} \frac{\left(\lambda p_{i} t\right)^{c_{i}}}{c_{i}!} \\
= & e^{-\lambda t}(\lambda t)^{N} \prod_{i=1}^{n} \frac{p_{i}^{c_{i}}}{c_{i}!}=e^{-\lambda t} \frac{(\lambda t)^{N}}{N!} \cdot \frac{N!}{c_{1}!\cdots c_{n}!} p_{1}^{c_{1}} \cdots p_{n}^{c_{n}} \\
= & \operatorname{Poisson}(N ; \lambda t) \cdot \text { Multinomial }(c ; N, p)
\end{aligned}
$$

- The process for $N$ inherits independent and stationary increments from the sub-processes, so it follows it is also a Poisson process.


## Uniformly distributed arrivals

- LEMMA ${ }^{2}$ : Let $\left(N_{t}\right)_{t \geq 0}$ be a Poisson process with parameter $\lambda$. If we fix that $N_{t}=k$ and we select uniformly randomly one of these $k$ arrivals, then its arrival time is uniformly distributed on the interval $[0, t]$.
- Proof on next page.
- Consequence: We can simulate a Poisson process on $[0, t]$ by first simulating $N_{t}$, and then simulating the $N_{t}$ arrival times as independently uniformly distributed on the interval $[0, t]$.
- Consequence: When $N_{t}=k$ is fixed, the $n$ 'th arrival time has the same distribution as the $n$ 'th value among $k$ independent uniformly distributed variables on $[0, t]$.

[^1]
## Proof

$$
\begin{aligned}
& \operatorname{Pr}\left(S_{k} \geq s \mid k \text { uniformly random in }\{1, \ldots, n\}, N_{t}=n\right) \\
= & \frac{1}{n} \sum_{k=1}^{n} \operatorname{Pr}\left(S_{k} \geq s \mid N_{t}=n\right)=\frac{1}{n} \sum_{k=1}^{n} \sum_{j=0}^{k-1} \operatorname{Pr}\left(N_{s}=j \mid N_{t}=n\right) \\
= & \frac{1}{n} \sum_{k=1}^{n} \sum_{j=0}^{k-1} \frac{\operatorname{Pr}\left(N_{s}=j\right) \operatorname{Pr}\left(N_{t-s}=n-j\right)}{\operatorname{Pr}\left(N_{t}=n\right)} \\
= & \frac{1}{n} \sum_{j=0}^{n-1} \sum_{k=j+1}^{n} \frac{e^{-\lambda s}(\lambda s)^{j} / j!\cdot e^{-\lambda(t-s)}(\lambda(t-s))^{n-j} /(n-j)!}{e^{-\lambda t}(\lambda t)^{n} / n!} \\
= & \frac{1}{n} \sum_{j=0}^{n-1}(n-j) \frac{n!}{j!(n-j)!}\left(\frac{s}{t}\right)^{j}\left(1-\frac{s}{t}\right)^{n-j} \\
= & {\left[\sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-j-1)!}\left(\frac{s}{t}\right)^{j}\left(1-\frac{s}{t}\right)^{n-j-1}\right]\left(1-\frac{s}{t}\right) } \\
= & 1-\frac{s}{t}
\end{aligned}
$$


[^0]:    ${ }^{1} \mathrm{~A}$ somewhat different treatment compared to Dobrow

[^1]:    ${ }^{2} \mathrm{~A}$ somewhat different treatment compared to Dobrow

