MVE550 2022 Lecture 10 Poisson processes Dobrow chapter 6, sections 6.6 - 6.7 Continuous-time Markov chains Dobrow chapter 7, sections 7.1 - 7.4

Petter Mostad

Chalmers University

December 1, 2022

► Three different but equivalent definitions.

- Some selected properties:
 - $N_t \sim \text{Poisson}(\lambda t)$
 - Independent increments
 - Stationary increments
 - Inter-arrival times distributed as $X_i \sim \text{Exponential}(\lambda)$.
 - Arrival times distributed as $S_n \sim \text{Gamma}(n, \lambda)$.
 - Superposition and thinning.

Another important property: Let (N_t)_{t≥0} be a Poisson process with parameter λ. If we fix that N_t = k and we select one of these k arrivals, its arrival time is uniformly distributed on the interval [0, t].

- A collection of random variables {N_A}_{A⊆ℝ^d} is a spatial Poisson process with parameter λ if
 - For each bounded set $A \subseteq \mathbb{R}^d$, N_A has a Poisson distribution with parameter $\lambda|A|$.
 - ▶ Whenever $A \subseteq B$, $N_A \leq N_B$.
 - Whenever A and B are disjoint sets, N_A and N_B are independent.
- Simulate by first simulating the total (Poisson distributed) and then place points independently uniformly within the area.
- One may use simulations to estimate properties such as the average distance to the nearest neighbour (or the third nearest neighbour or whatever).
- Quite useful model in practice.

- ▶ A counting process $\{N_t\}_{t\geq 0}$ is a *non-homogeneous* Poisson process with intensity function $\lambda(t)$ if
 - *N*₀ = 0.
 For *t* > 0.

$$N_t \sim \mathsf{Poisson}\left(\int_0^t \lambda(x)\,dx\right)$$

It has independent increments.

- Again a very flexible and useful model in practice.
- One may have non-homogeneous spatial Poisson processes.

Introduction to continuous-time Markov chains

- We now consider general continuous-time discrete state space Markov chains.
- Comparing to counting processes: We can now potentially jump between any two states.
- Comparing to the discrete-time Markov chains: We now model that we stay in each state for some real-valued amount of time.
- The Markov property is a type of "memorylessness": The property will imply that the amount of time spent in each state is Exponentially distributed.
- Very useful tool, can be used to model for example queues.

Example

We have previously discussed modelling the weather as a discrete time Markov chain where the weather *each day* is "rain", "snow", or "clear", with transition matrix for example

$$P = \begin{bmatrix} 0.2 & 0.6 & 0.2 \\ 0.1 & 0.8 & 0.1 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

- A more realistic model is that each weather type lasts some length of time, before changing to a *different* weather type:
 - Let's say the time each weather type lasts is Exponentially distributed with parameters q_r, q_s and q_c (so that expected durations of weather types are 1/q_r, 1/q_s, 1/q_c, respectively).
 - Transitions after this time could happen according to a transition matrix, for example

$$ilde{P} = egin{bmatrix} 0 & 3/4 & 1/4 \ 1/2 & 0 & 1/2 \ 1/5 & 4/5 & 0 \end{bmatrix}$$

Note that the process is completely described by parameters q_r, q_s, q_c and p_{ij}, where P̃_{ij} = p_{ij}. Note that p_{ii} = 0 for all i.

Continuous time Markov chains

► A continuous time stochastic process {X_t}_{t≥0} with discrete state space S is a *continuous time Markov chain* if

$$P(X_{t+s} = j \mid X_s = i, X_u, 0 \le u < s) = P(X_{t+s} = j \mid X_s = i)$$

where $s, t \ge 0$ and $i, j, x_u \in S$.

.

• The process is *time-homogeneous* if for $s, t \ge 0$ and all $i, j \in S$

$$P(X_{t+s} = j \mid X_s = i) = P(X_t = j \mid X_0 = i)$$

We then define the transition function as the matrix function P(t) with the entries of the matrix given by

$$P(t)_{ij} = P(X_t = j \mid X_0 = i)$$

The Chapman-Kolmogorov Equations

For the transition function P(t) we have

- P(s+t) = P(s)P(t) (Note: Matrix equation!)
- ► *P*(0) = *I*
- Note similarity to the properties of the exponential function! However, P(t) is a matrix, not a number.
- Example:
 - A Poisson process with parameter λ is a continuous time time-homogeneous Markov chain.
 - We get

$$P(t) = \begin{bmatrix} e^{-\lambda t} & (\lambda t)e^{-\lambda t} & (\lambda t)^2 e^{-\lambda t}/2! & (\lambda t)^3 e^{-\lambda t}/3! & \dots \\ 0 & e^{-\lambda t} & (\lambda t)e^{-\lambda t} & (\lambda t)^2 e^{-\lambda t}/2! & \dots \\ 0 & 0 & e^{-\lambda t} & (\lambda t)e^{-\lambda t} & \dots \\ 0 & 0 & 0 & e^{-\lambda t} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Holding times are exponentially distributed

Define T_i as the time the continuous-time Markov chain started in i stays in i before moving to a different state, so that for any s > 0

$$P(T_i > s) = P(X_u = i, 0 \le u \le s)$$

- The distribution of T_i is *memoryless* and thus exponential.
- We define q_i so that

 $T_i \sim \text{Exponential}(q_i)$

- Remember that this means that the average time the process stays in *i* is 1/q_i. The *rate* of transition out of the state is q_i.
- Note that we can have $q_i = 0$ meaning that the state *i* is *absorbing*: $P(T_i > s) = 1$.

- Define a new stochastic process by listing the states the chain visits. This will be a discrete time Markov chain.
- lt is called the *embedded chain*; transition matrix is denoted \tilde{P} .
- Note that \tilde{P} has zeros along its diagonal!
- ► Note that the continuous time Markov chain is completely determined by the expected holding times (1/q₁,...,1/q_k) and the transition matrix P̃ of the embedded chain. We write p_{ij} for the entries of P̃.

Describing the chain using transition rates

A way to describe a continuous-time Markov chain is to describe $k \times (k-1)$ independent "alarm clocks":

- For states *i* and *j* so that *i* ≠ *j*, let *q_{ij}* be the parameter of an Exponentially distributed random variable representing the time until an "alarm clock" rings.
- When in state *i*, wait until the *first* alarm clock rings, then move to the state given by the index *j* of that alarm clock. This defines a continuous-time Markov chain.
- The time until the first alarmclock rings is Exponentially distributed with parameter given by

$$q_i = q_{i1} + q_{i2} + \dots + q_{i,i-1} + q_{i,i+1} + \dots + q_{ik}$$
(1)

i.e., the parameter of the holding time distribution at *i*.

- The chain is completely described by the rates q_{ij} , $i \neq j$.
- We saw above: The chain is also completely determined by the p_{ij} and the q_i. The relationship is described by Equation 1 and, for i ≠ j,

$$p_{ij} = rac{q_{ij}}{q_{i1}+q_{i2}+\cdots+q_{i,i-1}+q_{i,i+1}+\cdots+q_{ik}} = rac{q_{ij}}{q_i}.$$

The derivative of P(t) at zero

To relate P(t) to the q_{ij}'s, we first relate them to P'(0).
Assuming P(t) is differentiable we can show that

$$P'(0) = \begin{bmatrix} -q_1 & q_{12} & q_{13} & \dots & q_{1k} \\ q_{21} & -q_2 & q_{23} & \dots & q_{2k} \\ q_{31} & q_{31} & -q_3 & \dots & q_{3k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{k1} & q_{k2} & q_{k3} & \dots & -q_k \end{bmatrix} = Q$$

where the q_i and the q_{ij} are those defined earlier.

- Note that the rows of P'(0), i.e., Q, sum to zero!
- In fact we don't need to require a finite state space; discrete is enough.
- ▶ *Q* is called the *(infinitesimal)* generator of the chain.

• Prove: We get that for all $t \ge 0$,

$$P'(t) = P(t)Q = QP(t)$$

Note what this means in terms of the components of P(t):

$$egin{array}{rcl} P'(t)_{ij}&=&-P_{ij}(t)q_j+\sum_{k
eq j}P_{ik}(t)q_{kj}\ P'(t)_{ij}&=&-q_iP_{ij}(t)+\sum_{k
eq i}q_{ik}P_{kj}(t) \end{array}$$

Either line with equations above define a set of differential equations which the components of the matrix function P(t) needs to fulfill. For any square matrix A define the *matrix exponential* as

$$e^{A} = \sum_{n=0}^{\infty} \frac{1}{n!} A^{n} = I + A + \frac{1}{2} A^{2} + \frac{1}{6} A^{3} + \frac{1}{24} A^{4} + \dots$$

▶ The series converges for all square matrices A (we don't show this).

Some important properties:

•
$$e^0 = I$$
.
• $e^A e^{-A} = I$.
• $e^{(s+t)A} = e^{sA} e^{tA}$.
• If $AB = BA$ then $e^{A+B} = e^A e^B = e^B e^A$.
• $\frac{\partial}{\partial t} e^{tA} = A e^{tA} = e^{tA} A$.

- ▶ $P(t) = e^{tQ}$ is the unique solution to the differential equations P'(t) = QP(t) for all $t \ge 0$ and P(0) = I.
- In R you may use expm from R package expm to compute exponential matrices.

Assume there exists an invertible matrix S and a matrix D such that $Q = SDS^{-1}$. Then (show!)

$$e^{tQ} = Se^{tD}S^{-1}$$

• If
$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_k \end{bmatrix}$$
 is a diagonal matrix, then (show!)
 $e^{tD} = \begin{bmatrix} e^{t\lambda_1} & 0 & \dots & 0 \\ 0 & e^{t\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{t\lambda_k} \end{bmatrix}$.

Recall that if Q is diagonalizable it can be written as Q = SDS⁻¹ where D is diagonal with the eigenvalues along the diagonal, and S has the corresponding eigenvectors as columns.

Limiting and stationary distributions

A probability vector v represents a *limiting distribution* if, for all states i and j,

$$\lim_{t\to\infty}P_{ij}(t)=v_j.$$

► A probability vector v represents a stationary distribution, if, for all t ≥ 0,

$$v = vP(t)$$

- Note: This happens if and only if 0 = vQ.
- A limiting distribution is a stationary distribution but not necessarily vice versa.
- A continuous-time Markov chain is *irreducible* if for all *i* and *j* there exists a t > 0 such that P_{ij}(t) > 0.
- However, periodic continuous-time Markov chains do not exist: If $P_{ij}(t) > 0$ for some t > 0 then $P_{ij}(t) > 0$ for all t > 0.

- An absorbing communication class is one where there is zero probability (i.e., zero rate) of leaving it to other communication classes.
- For a finite-state continuous-time Markov chain (with finite holding time parameters) there are two possibilities:
 - The process is irreducible, and $P_{ij}(t) > 0$ for all t > 0 and all i, j.
 - The process contains one or more absorbing communication classes.
- ▶ Fundamental Limit Theorem: Let $\{X_t\}_{t\geq 0}$ be a finite, irreducible, continuous-time Markov chain with transition function P(t). Then there exists a unique stationary distribution vector v which is also the limiting distribution.
- The limiting distribution of such a chain can be found as the unique v satisfying vQ = 0.