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Poisson processes: Short review from last lecture

▶ Three different but equivalent definitions.

▶ Some selected properties:
▶ Nt ∼ Poisson(λt)
▶ Independent increments
▶ Stationary increments
▶ Inter-arrival times distributed as Xi ∼ Exponential(λ).
▶ Arrival times distributed as Sn ∼ Gamma(n, λ).
▶ Superposition and thinning.

▶ Another important property: Let (Nt)t≥0 be a Poisson process with
parameter λ. If we fix that Nt = k and we select one of these k
arrivals, its arrival time is uniformly distributed on the interval [0, t].
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Spatial Poisson processes

▶ A collection of random variables {NA}A⊆Rd is a spatial Poisson
process with parameter λ if
▶ For each bounded set A ⊆ Rd , NA has a Poisson distribution with

parameter λ|A|.
▶ Whenever A ⊆ B, NA ≤ NB .
▶ Whenever A and B are disjoint sets, NA and NB are independent.

▶ Simulate by first simulating the total (Poisson distributed) and then
place points independently uniformly within the area.

▶ One may use simulations to estimate properties such as the average
distance to the nearest neighbour (or the third nearest neighbour or
whatever).

▶ Quite useful model in practice.
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Non-homogeneous Poisson processes

▶ A counting process {Nt}t≥0 is a non-homogeneous Poisson process
with intensity function λ(t) if
▶ N0 = 0.
▶ For t > 0,

Nt ∼ Poisson

(∫ t

0

λ(x) dx

)
▶ It has independent increments.

▶ Again a very flexible and useful model in practice.

▶ One may have non-homogeneous spatial Poisson processes.
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Introduction to continuous-time Markov chains

▶ We now consider general continuous-time discrete state space
Markov chains.

▶ Comparing to counting processes: We can now potentially jump
between any two states.

▶ Comparing to the discrete-time Markov chains: We now model that
we stay in each state for some real-valued amount of time.

▶ The Markov property is a type of “memorylessness”: The property
will imply that the amount of time spent in each state is
Exponentially distributed.

▶ Very useful tool, can be used to model for example queues.
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Example

▶ We have previously discussed modelling the weather as a discrete
time Markov chain where the weather each day is “rain”, “snow”, or
“clear”, with transition matrix for example

P =

0.2 0.6 0.2
0.1 0.8 0.1
0.1 0.4 0.5

 .

▶ A more realistic model is that each weather type lasts some length
of time, before changing to a different weather type:
▶ Let’s say the time each weather type lasts is Exponentially

distributed with parameters qr , qs and qc (so that expected
durations of weather types are 1/qr , 1/qs , 1/qc , respectively).

▶ Transitions after this time could happen according to a transition
matrix, for example

P̃ =

 0 3/4 1/4
1/2 0 1/2
1/5 4/5 0

 .

▶ Note that the process is completely described by parameters
qr , qs , qc and pij , where P̃ij = pij . Note that pii = 0 for all i .
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Continuous time Markov chains

▶ A continuous time stochastic process {Xt}t≥0 with discrete state
space S is a continuous time Markov chain if

P(Xt+s = j | Xs = i ,Xu, 0 ≤ u < s) = P(Xt+s = j | Xs = i)

where s, t ≥ 0 and i , j , xu ∈ S .

▶ The process is time-homogeneous if for s, t ≥ 0 and all i , j ∈ S

P(Xt+s = j | Xs = i) = P(Xt = j | X0 = i)

.

▶ We then define the transition function as the matrix function P(t)
with the entries of the matrix given by

P(t)ij = P(Xt = j | X0 = i)
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The Chapman-Kolmogorov Equations

For the transition function P(t) we have

▶ P(s + t) = P(s)P(t) (Note: Matrix equation!)

▶ P(0) = I

▶ Note similarity to the properties of the exponential function!
However, P(t) is a matrix, not a number.

▶ Example:
▶ A Poisson process with parameter λ is a continuous time

time-homogeneous Markov chain.
▶ We get

P(t) =


e−λt (λt)e−λt (λt)2e−λt/2! (λt)3e−λt/3! . . .

0 e−λt (λt)e−λt (λt)2e−λt/2! . . .

0 0 e−λt (λt)e−λt . . .

0 0 0 e−λt . . .
...

...
...

...
. . .
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Holding times are exponentially distributed

▶ Define Ti as the time the continuous-time Markov chain started in i
stays in i before moving to a different state, so that for any s > 0

P(Ti > s) = P(Xu = i , 0 ≤ u ≤ s)

▶ The distribution of Ti is memoryless and thus exponential.

▶ We define qi so that

Ti ∼ Exponential(qi )

▶ Remember that this means that the average time the process stays
in i is 1/qi . The rate of transition out of the state is qi .

▶ Note that we can have qi = 0 meaning that the state i is absorbing:
P(Ti > s) = 1 .
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The embedded chain

▶ Define a new stochastic process by listing the states the chain visits.
This will be a discrete time Markov chain.

▶ It is called the embedded chain; transition matrix is denoted P̃.

▶ Note that P̃ has zeros along its diagonal!

▶ Note that the continuous time Markov chain is completely
determined by the expected holding times (1/q1, . . . , 1/qk) and the
transition matrix P̃ of the embedded chain. We write pij for the

entries of P̃.
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Describing the chain using transition rates

A way to describe a continuous-time Markov chain is to describe
k × (k − 1) independent “alarm clocks”:
▶ For states i and j so that i ̸= j , let qij be the parameter of an

Exponentially distributed random variable representing the time until
an “alarm clock” rings.

▶ When in state i , wait until the first alarm clock rings, then move to
the state given by the index j of that alarm clock. This defines a
continuous-time Markov chain.

▶ The time until the first alarmclock rings is Exponentially distributed
with parameter given by

qi = qi1 + qi2 + · · ·+ qi,i−1 + qi,i+1 + · · ·+ qik (1)

i.e., the parameter of the holding time distribution at i .
▶ The chain is completely described by the rates qij , i ̸= j .
▶ We saw above: The chain is also completely determined by the pij

and the qi . The relationship is described by Equation 1 and, for
i ̸= j ,

pij =
qij

qi1 + qi2 + · · ·+ qi,i−1 + qi,i+1 + · · ·+ qik
=

qij
qi

.
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The derivative of P(t) at zero

▶ To relate P(t) to the qij ’s, we first relate them to P ′(0).

▶ Assuming P(t) is differentiable we can show that

P ′(0) =


−q1 q12 q13 . . . q1k
q21 −q2 q23 . . . q2k
q31 q31 −q3 . . . q3k
...

...
...

. . .
...

qk1 qk2 qk3 . . . −qk

 = Q

where the qi and the qij are those defined earlier.

▶ Note that the rows of P ′(0), i.e., Q, sum to zero!

▶ In fact we don’t need to require a finite state space; discrete is
enough.

▶ Q is called the (infinitesimal) generator of the chain.
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Kolmogorov Forward Backward

▶ Prove: We get that for all t ≥ 0,

P ′(t) = P(t)Q = QP(t)

▶ Note what this means in terms of the components of P(t):

P ′(t)ij = −Pij(t)qj +
∑
k ̸=j

Pik(t)qkj

P ′(t)ij = −qiPij(t) +
∑
k ̸=i

qikPkj(t)

▶ Either line with equations above define a set of differential equations
which the components of the matrix function P(t) needs to fulfill.
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The matrix exponential

▶ For any square matrix A define the matrix exponential as

eA =
∞∑
n=0

1

n!
An = I + A+

1

2
A2 +

1

6
A3 +

1

24
A4 + . . .

▶ The series converges for all square matrices A (we don’t show this).

▶ Some important properties:
▶ e0 = I .
▶ eAe−A = I .
▶ e(s+t)A = esAetA.
▶ If AB = BA then eA+B = eAeB = eBeA.
▶ ∂

∂t
etA = AetA = etAA.

▶ P(t) = etQ is the unique solution to the differential equations
P ′(t) = QP(t) for all t ≥ 0 and P(0) = I .

▶ In R you may use expm from R package expm to compute
exponential matrices.
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Computing the matrix exponential

▶ Assume there exists an invertible matrix S and a matrix D such that
Q = SDS−1. Then (show!)

etQ = SetDS−1

▶ If D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk

 is a diagonal matrix, then (show!)

etD =


etλ1 0 . . . 0
0 etλ2 . . . 0
...

...
. . .

...
0 0 . . . etλk

.
▶ Recall that if Q is diagonalizable it can be written as Q = SDS−1

where D is diagonal with the eigenvalues along the diagonal, and S
has the corresponding eigenvectors as columns.
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Limiting and stationary distributions

▶ A probability vector v represents a limiting distribution if, for all
states i and j ,

lim
t→∞

Pij(t) = vj .

▶ A probability vector v represents a stationary distribution, if, for all
t ≥ 0,

v = vP(t)

▶ Note: This happens if and only if 0 = vQ.

▶ A limiting distribution is a stationary distribution but not necessarily
vice versa.

▶ A continuous-time Markov chain is irreducible if for all i and j there
exists a t > 0 such that Pij(t) > 0.

▶ However, periodic continuous-time Markov chains do not exist: If
Pij(t) > 0 for some t > 0 then Pij(t) > 0 for all t > 0.

16 / 17



The fundamental limit theorem

▶ An absorbing communication class is one where there is zero
probability (i.e., zero rate) of leaving it to other commuication
classes.

▶ For a finite-state continuous-time Markov chain (with finite holding
time parameters) there are two possibilities:
▶ The process is irreducible, and Pij(t) > 0 for all t > 0 and all i , j .
▶ The process contains one or more absorbing communication classes.

▶ Fundamental Limit Theorem: Let {Xt}t≥0 be a finite, irreducible,
continuous-time Markov chain with transition funciton P(t). Then
there exists a unique stationary distribution vector v which is also
the limiting distribution.

▶ The limiting distribution of such a chain can be found as the unique
v satisfying vQ = 0.
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