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Poisson processes: Short review from last lecture

» Three different but equivalent definitions.

» Some selected properties:

N; ~ Poisson(At)

Independent increments

Stationary increments

Inter-arrival times distributed as X; ~ Exponential(}).
Arrival times distributed as S, ~ Gamma(n, \).

» Superposition and thinning.
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» Another important property: Let (N;):>o be a Poisson process with
parameter . If we fix that N; = k and we select one of these k
arrivals, its arrival time is uniformly distributed on the interval [0, t].
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Spatial Poisson processes

» A collection of random variables {Na} scro is a spatial Poisson
process with parameter \ if -
» For each bounded set A C RY, Ny has a Poisson distribution with
parameter A|A|.
» Whenever A C B, Ny < Npg.
» Whenever A and B are disjoint sets, Na and Ng are independent.
» Simulate by first simulating the total (Poisson distributed) and then
place points independently uniformly within the area.

» One may use simulations to estimate properties such as the average
distance to the nearest neighbour (or the third nearest neighbour or
whatever).

» Quite useful model in practice.

3/17



Non-homogeneous Poisson processes

» A counting process {N;}:>o is a non-homogeneous Poisson process
with intensity function A(t) if

> Np =0.
> Fort >0,
t
N; ~ Poisson (/ A(x) dx)
0
» |t has independent increments.
» Again a very flexible and useful model in practice.

» One may have non-homogeneous spatial Poisson processes.
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Introduction to continuous-time Markov chains

» We now consider general continuous-time discrete state space
Markov chains.

» Comparing to counting processes: We can now potentially jump
between any two states.

» Comparing to the discrete-time Markov chains: We now model that
we stay in each state for some real-valued amount of time.

» The Markov property is a type of “memorylessness’: The property
will imply that the amount of time spent in each state is
Exponentially distributed.

» Very useful tool, can be used to model for example queues.
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» We have previously discussed modelling the weather as a discrete
time Markov chain where the weather each day is “rain”, “snow", or
“clear”, with transition matrix for example

0.2 06 02
P=101 08 0.1
0.1 04 05

» A more realistic model is that each weather type lasts some length
of time, before changing to a different weather type:
> Let's say the time each weather type lasts is Exponentially
distributed with parameters g,, gs and gc (so that expected
durations of weather types are 1/q;, 1/gs, 1/qc, respectively).
» Transitions after this time could happen according to a transition

matrix, for example

0 3/4 1/4
P=11/2 0 1)2
1/5 4/5 0

> Note that the process is completely described by parameters
Gr, gs, c and pj;, where P;; = p;;. Note that p; = 0 for all j.
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Continuous time Markov chains

» A continuous time stochastic process {X;}+>o with discrete state
space S is a continuous time Markov chain if

P(Xevs =J | Xs =1, X0, 0< < 8) = P(Xews = j | X = i)

where s, t >0 and /,j,x, € S.

» The process is time-homogeneous if for s,t >0 and all i,j € S

P(Xeys =J [ Xs =10) = P(Xe = j | Xo = 1)

> We then define the transition function as the matrix function P(t)
with the entries of the matrix given by

P(t)j = P(Xe =Jj | Xo =)
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The Chapman-Kolmogorov Equations

For the transition function P(t) we have
> P(s+t)= P(s)P(t) (Note: Matrix equation!)
> P(0)=1
» Note similarity to the properties of the exponential function!
However, P(t) is a matrix, not a number.
» Example:

» A Poisson process with parameter A is a continuous time
time-homogeneous Markov chain.

> We get
e (A)e (At)le /2l (At)demM/3!
0 e M (At)e ™ (At)’e /2!
— At — At
P(r)=| O 0 e (At)e
® 0 0 0 e M
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Holding times are exponentially distributed

» Define T; as the time the continuous-time Markov chain started in i
stays in i/ before moving to a different state, so that for any s > 0

P(T;>s)=P(X,=i,0<u<s)

» The distribution of T; is memoryless and thus exponential.
» We define g; so that

T; ~ Exponential(g;)

» Remember that this means that the average time the process stays
in i is 1/q;. The rate of transition out of the state is g;.

» Note that we can have g; = 0 meaning that the state / is absorbing:
P(Ti>s)=1.

9/17



The embedded chain

v

Define a new stochastic process by listing the states the chain visits.
This will be a discrete time Markov chain.

It is called the embedded chain; transition matrix is denoted 23
Note that P has zeros along its diagonal!

Note that the continuous time Markov chain is completely
determined by the expected holding times (1/q1,...,1/qx) and the
transition matrix P of the embedded chain. We write pjj for the
entries of P.
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Describing the chain using transition rates

A way to describe a continuous-time Markov chain is to describe
k x (k — 1) independent “alarm clocks":

» For states i and j so that i # j, let g;; be the parameter of an
Exponentially distributed random variable representing the time until
an “alarm clock” rings.

» When in state /, wait until the first alarm clock rings, then move to
the state given by the index j of that alarm clock. This defines a
continuous-time Markov chain.

» The time until the first alarmclock rings is Exponentially distributed
with parameter given by

9i =9qin+ g2+ -+ qii-1+ Giiv1+ o+ Gk (1)

i.e., the parameter of the holding time distribution at /.

» The chain is completely described by the rates g;;, i # j .

> We saw above: The chain is also completely determined by the p;;
and the g;. The relationship is described by Equation 1 and, for

i #J,

qgij qij
Pij 4 ==

g1t e+t Giit it ax g
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The derivative of P(t) at zero

» To relate P(t) to the gj's, we first relate them to P’(0).
» Assuming P(t) is differentiable we can show that

—q1 qi2 qi3 ... (Qik

q21 —Qq2 Q23 ... Q2
P'(0)= 91 @91 —G3 .- k| =Q

k1 qk2 Qqk3 ... —Qk

where the g; and the gj; are those defined earlier.
> Note that the rows of P’(0), i.e., @, sum to zero!

» In fact we don't need to require a finite state space; discrete is
enough.

» @ is called the (infinitesimal) generator of the chain.
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Kolmogorov Forward Backward

» Prove: We get that for all t > 0,
P'(t) = P(t)Q = QP(t)

» Note what this means in terms of the components of P(t):

P'(t); = _PU(t)qj+ZPik(t)qkj
kA

P(t); = —aiPy(t)+ Y qwPy(t)
K2

» Either line with equations above define a set of differential equations
which the components of the matrix function P(t) needs to fulfill.
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The matrix exponential

» For any square matrix A define the matrix exponential as

1

1 1
e“=Z,1—A”:/JrA+§A2+6

1
A4 A4
+ oA+

» The series converges for all square matrices A (we don't show this).
» Some important properties:

> 0=

> fe A=,

» e(s+t)A _ esAetA

> If AB = BA then e"B = e%ef = Be”.
> Dt — A = A,

ot
> P(t) = e'Q is the unique solution to the differential equations
P'(t) = QP(t) for all t > 0 and P(0) = I.
> In R you may use expm from R package expm to compute
exponential matrices.
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Computing the matrix exponential

» Assume there exists an invertible matrix S and a matrix D such that
Q = SDS~1. Then (show!)

etQ _ SetD571

A1 O 0
X ... 0
> If D= | . . ) . | is a diagonal matrix, then (show!)
0o 0 . Ak
et 0
0 et 0
otD — .
0 0 etAk

» Recall that if Q is diagonalizable it can be written as Q = SDS!
where D is diagonal with the eigenvalues along the diagonal, and S
has the corresponding eigenvectors as columns.
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Limiting and stationary distributions

» A probability vector v represents a limiting distribution if, for all
states / and j,
Jim_ Py(t) = v;.
» A probability vector v represents a stationary distribution, if, for all
t>0,
v = vP(t)

» Note: This happens if and only if 0 = vQ.

» A limiting distribution is a stationary distribution but not necessarily
vice versa.

» A continuous-time Markov chain is irreducible if for all i and j there
exists a t > 0 such that Pj(t) > 0.

» However, periodic continuous-time Markov chains do not exist: If
Pjj(t) > 0 for some t > 0 then Pj(t) > 0 for all t > 0.
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The fundamental limit theorem

» An absorbing communication class is one where there is zero
probability (i.e., zero rate) of leaving it to other commuication
classes.

> For a finite-state continuous-time Markov chain (with finite holding
time parameters) there are two possibilities:

> The process is irreducible, and Pj(t) > 0 for all t > 0 and all /,j.
» The process contains one or more absorbing communication classes.

» Fundamental Limit Theorem: Let {X;};>¢ be a finite, irreducible,
continuous-time Markov chain with transition funciton P(t). Then
there exists a unique stationary distribution vector v which is also
the limiting distribution.

» The limiting distribution of such a chain can be found as the unique
v satisfying vQ = 0.
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