
Poisson subordination (from last lecture)

▶ Given continuous-time Markov chain Xt with generator matrix Q. If
λ ≥ max(q, . . . , qk) then
▶ R = 1

λ
Q + I is a stochastic matrix.

▶ The transition matrix for Xt becomes

P(t) = etQ = e−tλI etλR = e−tλ
∞∑
n=0

(tλR)n

n!
=

∞∑
n=0

Rn e
−λt(λt)n

n!
.

▶ Define Zt = YNt where Nt is a Poisson process with parameter λ
and Yt is a discrete-time Markov chain with transition matrix R.
The transition matrix for Zt also becomes

P(t) =
∞∑
n=0

Rn e
−λt(λt)n

n!
.

▶ The above can be used to simulate from a Markov chain, and also
to compute P(t) = etQ with better accuracy.

▶ NOTE: The Poisson subordinate discrete chain Yt has the same
stationary distribution as the continuous chain Xt .
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Continuous-time continuous state space processes

▶ Having looked at
▶ Discrete-time discrete state space processes. (Discrete Markov

chains and Branching processes).
▶ Discrete-time continuous state space processes (not so much but we

had some MCMC examples).
▶ Continuous-time discrete state space processes (Poisson processes

and more generally continuous-time Markov chains).
▶ we now look at continuous-time continuous state space processes.

▶ We will look at two examples:
▶ Brownian motion.
▶ More generally, Gaussian processes.
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Brownian motion

▶ In a gas, atoms bump into each other and change course. Over
time, how does a single atom move, on average?

▶ If f (x , t) represents the probability density for the position x of an
atom at time t moving along a line, Albert Einstein showed that

∂

∂t
f (x , t) =

1

2

∂2

∂x2
f (x , t).

▶ The solution is

f (x , t) =
1√
2πt

e−x2/2t .

So x ∼ Normal(0, t) at time t.

▶ It turns out a single atom will move as simulated below. These
paths are sampled from a model called Brownian motion.
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Definition of Brownian motion

Brownian motion is a continuous-time stochastic process {Bt}t≥0 with
the following properties:

1. B0 = 0.

2. For t > 0, Bt ∼ Normal(0, t) (so the variance is t, not the standard
deviation).

3. For s, t > 0, Bt+s − Bs ∼ Normal(0, t).

4. For 0 ≤ q < r ≤ s < t, Bt − Bs is independent from Br − Bq.

5. The function t 7→ Bt is continuous with probability 1.
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Simulation of Brownian motion

▶ Given time points t1 < t2 < · · · < tn, we can write

Bti = Bti−1 + (Bti − Bti−1) = Bti−1 + Zi

where Zi ∼ Normal(0, ti − ti−1).
▶ Writing t0 = 0, we get for independent Z1, . . . ,Zn,

Btn =
n∑

i=1

Zi .

▶ A good way to simulate the path t 7→ Bt on t ∈ [0, a] is to set
ti = ai/n, simulate independently

Zi ∼ Normal(0, a/n)

and compute

Bti =
i∑

j=1

Zj .

▶ Note that we can also write Zi =
√

a/nYi , where Yi ∼ Normal(0, 1).

6 / 17



Zooming in on a Brownian motion realization

▶ What if we have a Brownian motion path simulated above, and want
to plot it at twice the detail?

▶ The difference Zi between the value at ti and ti+1 can be written as
a sum

Zi = Zi0 + Zi1

where Zi0,Zi1 ∼ Normal(0, a/2n) independently.

▶ Reformulation: If we know Zi , then Zi0 ∼ Normal(0, a/2n) as prior,
with likelihood Zi ∼ Normal(Zi0, a/2n). Using conjugacy we get the
posterior

Zi0 | Zi ∼ Normal

(
1

2
Zi ,

a

4n

)
.

▶ We get the value at midpoint between ti and ti+1 by simulating Zi0

and adding it to the value at ti .

▶ NOTE: The resulting plot could be generated from scratch simply as
Brownian motion using a/2n instead of a/n: Scaling the x axis with
factor 1/2 scales the y axis with factor

√
1/2.
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Computing with Brownian motion

▶ To compute probabilities for Brownian motion, we generally use the
properties in the definition, e.g.,
▶ Bt+s − Bs ∼ Normal(0, t)
▶ For 0 ≤ q < r ≤ s < t, Bt − Bs is independent from Br − Bq.

▶ Example: Show that B1 + B3 + 2B7 ∼ Normal(0, 50).

▶ Example: Show that P(B2 > 0 | B1 = 1) = 0.8413.

▶ Example: Show that Cov(Bs ,Bt) = min{s, t}.
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Random walks: What happens when n → ∞?

▶ Consider a symmetric random walk: A discrete time Markov chain
S0,S1,S2, . . . where

Sn = X1 + X2 + · · ·+ Xn

where X1,X2, . . . are independent random variables with expectation
zero.

▶ If we assume Var(Xi ) = 1 we get Var(Sn) = n.

▶ Interpolating between the values Sn we can make this into a
continuous time process St (see Dobrow). Var(St) ≈ t.

▶ We may scale with an s > 0 to get processes S
(s)
t = Sst/

√
s where

we get lims→∞ Var(S
(s)
t ) = t.

▶ It turns out that the processes S
(s)
t when s → ∞ are exactly

Brownian motion, no matter what type of Xi we start with!

▶ This is the Donsker invariance principle.

▶ We can see this effect in simulations.

▶ We can use this to find approximate properties of random walks.
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Nowhere differentiable paths

▶ We have seen in our simulations that paths of Brownian motion are
“jagged”.

▶ We have also seen that this quality is unchanged if we change the
scale, i.e., look at smaller intervals.

▶ Formally note that Bt+h − Bt ∼ Normal(0, h) so that

Bt+h − Bt

h
∼ Normal(0, 1/h)

▶ Using these observations as starting points, one may show that the
path (i.e., the function t 7→ Bt) of a Brownian motion is nowehere
differentiable, even though it is everywhere continuous.
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The multivariate normal distribution (review)

▶ Definition (one of many): A set of random variables X1, . . . ,Xk has
a multivariate normal distribution if, for all real a1, . . . , ak ,
a1X1 + · · ·+ akXk is normally distributed.

▶ It is completely determined by the expectation vector
µ = (E(X1), . . . ,E(Xk)) and the (k × k) covariance matrix Σ, where
Σij = Cov(Xi ,Xj).

▶ The joint density function on the vector x = (x1, . . . , xk) is

π(x) =
1

|2πΣ|1/2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
.

where |2πΣ| is the determinant of the matrix 2πΣ.

▶ All marginal distributions and all conditional distributions are also
multivariate normal.
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Gaussian processes

▶ A Gaussian process is a continuous-time stochastic process {Xt}t≥0

with the property that for all n ≥ 1 and 0 ≤ t1 < t2 < · · · < tn,
Xt1 , . . . ,Xtn has a multivariate normal distribution.

▶ Thus, a Gaussian process is completely determined by its mean
function E(Xt) and its covariance function Cov(Xs ,Xt).

▶ Gaussian processes are extremely versatile as models. One may
generalize for example so that the index set (the t’s) is Rn.
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Brownian motion and Gaussian processes

▶ Brownian motion is a Gaussian process, as we can show that any
a1Bt1 + · · ·+ akBtk is normally distributed.

▶ A Gaussian process {Xt}t≥0 is Brownian motion if and only if

1. X0 = 0.
2. E(Xt) = 0 for all t.
3. Cov(Xs ,Xt) = min{s, t} for all s, t.
4. The function t 7→ Xt is a continuous with probability 1.

▶ The proof is fairly straightforward (see Dobrow).

▶ One may use the above for example when proving that something is
Brownian motion, if it is easier than using the definition directly.
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Transformations of Brownian motion

▶ The following transformations of Brownian motion are again
Brownian motion:
▶ {−Bt}t≥0.
▶ (Bt+s − Bs)t≥0 for any s ≥ 0.

▶
{

1√
a
Bat

}
t≥0

for any a > 0.

▶ The process {Xt}t≥0 where X0 = 0 and Xt = tB1/t for t > 0.

▶ The proofs are fairly straightforward.

▶ The process Xt = x + Bt where Bt is Brownian motion and x is
some real number is called “Brownian motion started at x”.
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First hitting time and stopping times

▶ For any fixed t, (Bt+s − Bt)s≥0 is Brownian motion.

▶ Does this also happen if we start the chain anew from T when T is
random? It depends!

▶ If T is the largest value less than 1 where BT = 0, is BT+s − BT

Brownian motion?

▶ No!

▶ If T is the smallest value where BT = a for some constant a, is
BT+s − BT Brownian motion?

▶ Yes! The reason is that the event T = t can be determined based
on Br where 0 ≤ r ≤ t.

▶ Random T ’s that have this property are called stopping times. For
these BT+s − BT is Brownian motion.
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The distribution of the first hitting time

▶ Given a ̸= 0 what is the distribution of the first hitting time
Ta = min {t : Bt = a}?

▶ We prove below that

1

Ta
∼ Gamma

(
1

2
,
a2

2

)
▶ Assuming that a > 0 and using that Ta is a stopping time we get for

any t > 0 that Pr
(
B1/t > a | Ta < 1/t

)
= Pr

(
B1/t−Ta

> 0
)
= 1

2 .
▶ We also have

Pr
(
B1/t > a | Ta < 1/t

)
=

Pr
(
B1/t > a,Ta < 1/t

)
Pr (Ta < 1/t)

=
Pr

(
B1/t > a

)
Pr (Ta < 1/t)

.

▶ It follows that Pr (Ta < 1/t) = 2Pr
(
B1/t > a

)
and so

Pr

(
1

Ta
< t

)
= 2Pr

(
B1/t < a

)
− 1 = 2Pr

(
B1 < at1/2

)
− 1.

▶ Taking the derivative w.r.t. t we get the Gamma density

π1/Ta
(t) = 2

1√
2π

exp

(
−1

2
(at1/2)2

)
a

2
t−1/2.
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Maximum of Brownian motion

▶ Define Mt = max0≤s≤t Bs .

▶ We may compute for a > 0 (using result from previous page)

Pr (Mt > a) = Pr (Ta < t) = 2Pr (Bt > a) = Pr (|Bt | > a)

▶ Thus Mt has the same distribution as |Bt |, the absolute value of Bt .

▶ Example: What is the probability that M3 > 5?

▶ Example: Find t such that Pr (Mt ≤ 4) = 0.9.
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