Poisson subordination (from last lecture)

- Given continuous-time Markov chain X_{t} with generator matrix Q. If $\lambda \geq \max \left(q, \ldots, q_{k}\right)$ then
- $R=\frac{1}{\lambda} Q+l$ is a stochastic matrix.
- The transition matrix for X_{t} becomes

$$
P(t)=e^{t Q}=e^{-t \lambda l} e^{t \lambda R}=e^{-t \lambda} \sum_{n=0}^{\infty} \frac{(t \lambda R)^{n}}{n!}=\sum_{n=0}^{\infty} R^{n} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!} .
$$

- Define $Z_{t}=Y_{N_{t}}$ where N_{t} is a Poisson process with parameter λ and Y_{t} is a discrete-time Markov chain with transition matrix R. The transition matrix for Z_{t} also becomes

$$
P(t)=\sum_{n=0}^{\infty} R^{n} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!} .
$$

- The above can be used to simulate from a Markov chain, and also to compute $P(t)=e^{t Q}$ with better accuracy.
- NOTE: The Poisson subordinate discrete chain Y_{t} has the same stationary distribution as the continuous chain X_{t}.

MVE550 2022 Lecture 12
 Dobrow Sections 8.1-8.4
 Introduction to Brownian motion
 Gaussian processes

Petter Mostad

Chalmers University
December 8, 2022

Continuous-time continuous state space processes

- Having looked at
- Discrete-time discrete state space processes. (Discrete Markov chains and Branching processes).
- Discrete-time continuous state space processes (not so much but we had some MCMC examples).
- Continuous-time discrete state space processes (Poisson processes and more generally continuous-time Markov chains).
- we now look at continuous-time continuous state space processes.
- We will look at two examples:
- Brownian motion.
- More generally, Gaussian processes.

Brownian motion

- In a gas, atoms bump into each other and change course. Over time, how does a single atom move, on average?
- If $f(x, t)$ represents the probability density for the position x of an atom at time t moving along a line, Albert Einstein showed that

$$
\frac{\partial}{\partial t} f(x, t)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f(x, t)
$$

- The solution is

$$
f(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t}
$$

So $x \sim \operatorname{Normal}(0, t)$ at time t.

- It turns out a single atom will move as simulated below. These paths are sampled from a model called Brownian motion.

Definition of Brownian motion

Brownian motion is a continuous-time stochastic process $\left\{B_{t}\right\}_{t \geq 0}$ with the following properties:

1. $B_{0}=0$.
2. For $t>0, B_{t} \sim \operatorname{Normal}(0, t)$ (so the variance is t, not the standard deviation).
3. For $s, t>0, B_{t+s}-B_{s} \sim \operatorname{Normal}(0, t)$.
4. For $0 \leq q<r \leq s<t, B_{t}-B_{s}$ is independent from $B_{r}-B_{q}$.
5. The function $t \mapsto B_{t}$ is continuous with probability 1 .

Simulation of Brownian motion

- Given time points $t_{1}<t_{2}<\cdots<t_{n}$, we can write

$$
B_{t_{i}}=B_{t_{i-1}}+\left(B_{t_{i}}-B_{t_{i-1}}\right)=B_{t_{i-1}}+Z_{i}
$$

where $Z_{i} \sim \operatorname{Normal}\left(0, t_{i}-t_{i-1}\right)$.
\checkmark Writing $t_{0}=0$, we get for independent Z_{1}, \ldots, Z_{n},

$$
B_{t_{n}}=\sum_{i=1}^{n} Z_{i}
$$

- A good way to simulate the path $t \mapsto B_{t}$ on $t \in[0, a]$ is to set $t_{i}=a i / n$, simulate independently

$$
Z_{i} \sim \operatorname{Normal}(0, a / n)
$$

and compute

$$
B_{t_{i}}=\sum_{j=1}^{i} Z_{j}
$$

\rightarrow Note that we can also write $Z_{i}=\sqrt{a / n} Y_{i}$, where $Y_{i} \sim \operatorname{Normal}(0,1)$.

Zooming in on a Brownian motion realization

- What if we have a Brownian motion path simulated above, and want to plot it at twice the detail?
- The difference Z_{i} between the value at t_{i} and t_{i+1} can be written as a sum

$$
Z_{i}=Z_{i 0}+Z_{i 1}
$$

where $Z_{i 0}, Z_{i 1} \sim \operatorname{Normal}(0, a / 2 n)$ independently.

- Reformulation: If we know Z_{i}, then $Z_{i 0} \sim \operatorname{Normal}(0, a / 2 n)$ as prior, with likelihood $Z_{i} \sim \operatorname{Normal}\left(Z_{i 0}, a / 2 n\right)$. Using conjugacy we get the posterior

$$
Z_{i 0} \left\lvert\, Z_{i} \sim \operatorname{Normal}\left(\frac{1}{2} Z_{i}, \frac{a}{4 n}\right) .\right.
$$

- We get the value at midpoint between t_{i} and t_{i+1} by simulating $Z_{i 0}$ and adding it to the value at t_{i}.
- NOTE: The resulting plot could be generated from scratch simply as Brownian motion using $a / 2 n$ instead of a / n : Scaling the x axis with factor $1 / 2$ scales the y axis with factor $\sqrt{1 / 2}$.

Computing with Brownian motion

- To compute probabilities for Brownian motion, we generally use the properties in the definition, e.g.,
- $B_{t+s}-B_{s} \sim \operatorname{Normal}(0, t)$
- For $0 \leq q<r \leq s<t, B_{t}-B_{s}$ is independent from $B_{r}-B_{q}$.
- Example: Show that $B_{1}+B_{3}+2 B_{7} \sim \operatorname{Normal}(0,50)$.
- Example: Show that $P\left(B_{2}>0 \mid B_{1}=1\right)=0.8413$.
- Example: Show that $\operatorname{Cov}\left(B_{s}, B_{t}\right)=\min \{s, t\}$.

Random walks: What happens when $n \rightarrow \infty$?

- Consider a symmetric random walk: A discrete time Markov chain $S_{0}, S_{1}, S_{2}, \ldots$ where

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}
$$

where X_{1}, X_{2}, \ldots are independent random variables with expectation zero.

- If we assume $\operatorname{Var}\left(X_{i}\right)=1$ we get $\operatorname{Var}\left(S_{n}\right)=n$.
- Interpolating between the values S_{n} we can make this into a continuous time process S_{t} (see Dobrow). $\operatorname{Var}\left(S_{t}\right) \approx t$.
- We may scale with an $s>0$ to get processes $S_{t}^{(s)}=S_{s t} / \sqrt{s}$ where we get $\lim _{s \rightarrow \infty} \operatorname{Var}\left(S_{t}^{(s)}\right)=t$.
- It turns out that the processes $S_{t}^{(s)}$ when $s \rightarrow \infty$ are exactly Brownian motion, no matter what type of X_{i} we start with!
- This is the Donsker invariance principle.
- We can see this effect in simulations.
- We can use this to find approximate properties of random walks.

Nowhere differentiable paths

- We have seen in our simulations that paths of Brownian motion are "jagged".
- We have also seen that this quality is unchanged if we change the scale, i.e., look at smaller intervals.
- Formally note that $B_{t+h}-B_{t} \sim \operatorname{Normal}(0, h)$ so that

$$
\frac{B_{t+h}-B_{t}}{h} \sim \operatorname{Normal}(0,1 / h)
$$

- Using these observations as starting points, one may show that the path (i.e., the function $t \mapsto B_{t}$) of a Brownian motion is nowehere differentiable, even though it is everywhere continuous.

The multivariate normal distribution (review)

- Definition (one of many): A set of random variables X_{1}, \ldots, X_{k} has a multivariate normal distribution if, for all real a_{1}, \ldots, a_{k}, $a_{1} X_{1}+\cdots+a_{k} X_{k}$ is normally distributed.
- It is completely determined by the expectation vector $\mu=\left(\mathrm{E}\left(X_{1}\right), \ldots, \mathrm{E}\left(X_{k}\right)\right)$ and the $(k \times k)$ covariance matrix Σ, where $\Sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$.
- The joint density function on the vector $x=\left(x_{1}, \ldots, x_{k}\right)$ is

$$
\pi(x)=\frac{1}{|2 \pi \Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) .
$$

where $|2 \pi \Sigma|$ is the determinant of the matrix $2 \pi \Sigma$.

- All marginal distributions and all conditional distributions are also multivariate normal.

Gaussian processes

- A Gaussian process is a continuous-time stochastic process $\left\{X_{t}\right\}_{t \geq 0}$ with the property that for all $n \geq 1$ and $0 \leq t_{1}<t_{2}<\cdots<t_{n}$, $X_{t_{1}}, \ldots, X_{t_{n}}$ has a multivariate normal distribution.
- Thus, a Gaussian process is completely determined by its mean function $\mathrm{E}\left(X_{t}\right)$ and its covariance function $\operatorname{Cov}\left(X_{s}, X_{t}\right)$.
- Gaussian processes are extremely versatile as models. One may generalize for example so that the index set (the $t^{\prime} s$) is \mathbb{R}^{n}.

Brownian motion and Gaussian processes

- Brownian motion is a Gaussian process, as we can show that any $a_{1} B_{t_{1}}+\cdots+a_{k} B_{t_{k}}$ is normally distributed.
- A Gaussian process $\left\{X_{t}\right\}_{t \geq 0}$ is Brownian motion if and only if 1. $X_{0}=0$.

2. $\mathrm{E}\left(X_{t}\right)=0$ for all t.
3. $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\min \{s, t\}$ for all s, t.
4. The function $t \mapsto X_{t}$ is a continuous with probability 1 .

- The proof is fairly straightforward (see Dobrow).
- One may use the above for example when proving that something is Brownian motion, if it is easier than using the definition directly.

Transformations of Brownian motion

- The following transformations of Brownian motion are again Brownian motion:
- $\left\{-B_{t}\right\}_{t \geq 0}$.
- $\left(B_{t+s}-B_{s}\right)_{t \geq 0}$ for any $s \geq 0$.
- $\left\{\frac{1}{\sqrt{a}} B_{a t}\right\}_{t \geq 0}$ for any $a>0$.
- The process $\left\{X_{t}\right\}_{t \geq 0}$ where $X_{0}=0$ and $X_{t}=t B_{1 / t}$ for $t>0$.
- The proofs are fairly straightforward.
- The process $X_{t}=x+B_{t}$ where B_{t} is Brownian motion and x is some real number is called "Brownian motion started at x ".

First hitting time and stopping times

- For any fixed $t,\left(B_{t+s}-B_{t}\right)_{s \geq 0}$ is Brownian motion.
- Does this also happen if we start the chain anew from T when T is random? It depends!
- If T is the largest value less than 1 where $B_{T}=0$, is $B_{T+s}-B_{T}$ Brownian motion?
- No!
- If T is the smallest value where $B_{T}=a$ for some constant a, is $B_{T+s}-B_{T}$ Brownian motion?
- Yes! The reason is that the event $T=t$ can be determined based on B_{r} where $0 \leq r \leq t$.
- Random T 's that have this property are called stopping times. For these $B_{T+s}-B_{T}$ is Brownian motion.

The distribution of the first hitting time

- Given $a \neq 0$ what is the distribution of the first hitting time $T_{a}=\min \left\{t: B_{t}=a\right\} ?$
- We prove below that

$$
\frac{1}{T_{a}} \sim \operatorname{Gamma}\left(\frac{1}{2}, \frac{a^{2}}{2}\right)
$$

- Assuming that $a>0$ and using that T_{a} is a stopping time we get for any $t>0$ that $\operatorname{Pr}\left(B_{1 / t}>a \mid T_{a}<1 / t\right)=\operatorname{Pr}\left(B_{1 / t-T_{a}}>0\right)=\frac{1}{2}$.
- We also have

$$
\operatorname{Pr}\left(B_{1 / t}>a \mid T_{a}<1 / t\right)=\frac{\operatorname{Pr}\left(B_{1 / t}>a, T_{a}<1 / t\right)}{\operatorname{Pr}\left(T_{a}<1 / t\right)}=\frac{\operatorname{Pr}\left(B_{1 / t}>a\right)}{\operatorname{Pr}\left(T_{a}<1 / t\right)} .
$$

- It follows that $\operatorname{Pr}\left(T_{a}<1 / t\right)=2 \operatorname{Pr}\left(B_{1 / t}>a\right)$ and so

$$
\operatorname{Pr}\left(\frac{1}{T_{a}}<t\right)=2 \operatorname{Pr}\left(B_{1 / t}<a\right)-1=2 \operatorname{Pr}\left(B_{1}<a t^{1 / 2}\right)-1 .
$$

- Taking the derivative w.r.t. t we get the Gamma density

$$
\pi_{1 / T_{a}}(t)=2 \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(a t^{1 / 2}\right)^{2}\right) \frac{a}{2} t^{-1 / 2} .
$$

Maximum of Brownian motion

- Define $M_{t}=\max _{0 \leq s \leq t} B_{s}$.
- We may compute for $a>0$ (using result from previous page)

$$
\operatorname{Pr}\left(M_{t}>a\right)=\operatorname{Pr}\left(T_{a}<t\right)=2 \operatorname{Pr}\left(B_{t}>a\right)=\operatorname{Pr}\left(\left|B_{t}\right|>a\right)
$$

- Thus M_{t} has the same distribution as $\left|B_{t}\right|$, the absolute value of B_{t}.
- Example: What is the probability that $M_{3}>5$?
- Example: Find t such that $\operatorname{Pr}\left(M_{t} \leq 4\right)=0.9$.

