- A process $\{B_t\}_{t\geq 0}$ where $B_t \sim \text{Normal}(0, t)$. No parameters.
- Independent normally distributed increments.
- Continuous paths that are nowhere differentiable.
- Connection to random walks: The Donsker principle.
- Gaussian processes.
- Restarting Brownian motions at stopping times.

The distribution of the first hitting time

- Given $a \neq 0$ what is the distribution of the first hitting time $T_a = \min \{t : B_t = a\}$?
- We prove below that

$$rac{1}{T_a}\sim {\sf Gamma}\left(rac{1}{2},rac{a^2}{2}
ight)$$

Assuming that a > 0 and using that T_a is a stopping time we get for any t > 0 that Pr (B_{1/t} > a | T_a < 1/t) = Pr (B_{1/t-T_a} > 0) = ¹/₂.
 We also have

$$\Pr\left(B_{1/t} > a \mid T_a < 1/t\right) = \frac{\Pr\left(B_{1/t} > a, T_a < 1/t\right)}{\Pr\left(T_a < 1/t\right)} = \frac{\Pr\left(B_{1/t} > a\right)}{\Pr\left(T_a < 1/t\right)}$$

▶ It follows that $\Pr(T_a < 1/t) = 2\Pr(B_{1/t} > a)$ and so

$$\Pr\left(\frac{1}{T_a} < t\right) = 2\Pr\left(B_{1/t} < a\right) - 1 = 2\Pr\left(B_1 < at^{1/2}\right) - 1.$$

Taking the derivative w.r.t. t we get the Gamma density

$$\pi_{1/T_a}(t) = 2\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(at^{1/2})^2\right) \frac{a}{2}t^{-1/2}$$

• Define
$$M_t = \max_{0 \le s \le t} B_s$$
.

• We may compute for a > 0 (using result from previous page)

$$\Pr\left(M_t > a
ight) = \Pr\left(T_a < t
ight) = 2\Pr\left(B_t > a
ight) = \Pr\left(|B_t| > a
ight)$$

- Thus M_t has the same distribution as $|B_t|$, the absolute value of B_t .
- Example: What is the probability that $M_3 > 5$?
- Example: Find t such that $Pr(M_t \le 4) = 0.9$.

MVE550 2022 Lecture 13 Dobrow Sections 8.4 - 8.6 Zeros of Brownian motion. Brownian bridge. Modelling stocks and options. Martingales. Black Scholes

Petter Mostad

Chalmers University

December 13, 2022

Zeros of Brownian motion

Let L be the last zero in (0,1) of Brownian motion. (In other words, $L = \max\{t : 0 < t < 1, B_t = 0\}$. Then

$$L\sim \mathsf{Beta}\left(rac{1}{2},rac{1}{2}
ight).$$

Outline of proof on next page.

• Consequence: Let L_t be the last zero in (0, t). Then

$$L_t/t \sim \mathsf{Beta}\left(rac{1}{2},rac{1}{2}
ight).$$

- Note: The probability that Brownian motion has at least one zero in (r, t) for 0 ≤ r < t is 1 − Pr (L_t < r).</p>
- Note: The cumulative distribution for the Beta density can be computed with the arcsin function:

$$\Pr\left(L_t < r\right) = \int_0^{r/t} \operatorname{Beta}\left(s; \frac{1}{2}, \frac{1}{2}\right) \, ds = \frac{2}{\pi} \operatorname{arcsin}\left(\sqrt{\frac{r}{t}}\right)$$

Outline of proof

$$\Pr(L > s) = \int_{-\infty}^{\infty} \Pr(L > s \mid B_s = t) \operatorname{Normal}(t; 0, s) dt$$

$$= 2 \int_{0}^{\infty} \Pr(M_{1-s} > t) \operatorname{Normal}(t; 0, s) dt$$

$$= 2 \int_{0}^{\infty} 2 \Pr(B_{1-s} > t) \operatorname{Normal}(t; 0, s) dt$$

$$= 4 \int_{0}^{\infty} \int_{t}^{\infty} \operatorname{Normal}(r; 0, 1 - s) \operatorname{Normal}(t; 0, s) dr dt$$

$$= \dots$$

$$= \frac{1}{\pi} \int_{s}^{1} \frac{1}{\sqrt{x(1-x)}} dx$$

$$= \int_{s}^{1} \operatorname{Beta}\left(x; \frac{1}{2}, \frac{1}{2}\right) dx$$

Brownian bridge

- Define a Gaussian process X_t by conditioning Brownian motion B_t on B₁ = 0. Then X_t is a Brownian bridge.
- ▶ If 0 < s < t < 1 then (B_s, B_t, B_1) is multivariate normal with

$$E((B_s, B_t, B_1)) = (0, 0, 0), \quad Var((B_s, B_t, B_1)) = \Sigma = \begin{bmatrix} s & s & s \\ s & t & t \\ s & t & 1 \end{bmatrix}$$

Conditioning on $B_1 = 0$ and using properties of the multivariate normal (or see Dobrow) we get $E(X_t) = 0$ and

$$\operatorname{Cov}(X_s,X_t)=s-st.$$

Define another Gaussian process with Y_t = B_t - tB₁. Then we see that E(Y_t) = 0 and (when 0 < s < t < 1)</p>

$$\operatorname{Cov}(Y_s, Y_t) = s - st.$$

It follows that this is identical to the Brownian bridge defined above.

Example: Estimate by simulation: If a Brownian motion fulfills $B_1 = 0$, what is the probability that it has values below -1?

Brownian motion with a drift

▶ For real μ and σ > 0 define the Gaussian process X_t as

 $X_t = \mu t + \sigma B_t$

This is *Brownian motion with a drift*, and is often a more useful model than standard Brownian motion.

Examples:

- The amount won or lost in a game of chance that is not fair (approximating discrete winnings / losses with continuous changes).
- The score difference between two competing sports teams (approximating this difference with a continuous function).
- This is a Gaussian process with continuous paths and stationary and independent increments.
- Example: Computing the chance of winning team game based on intermdiate score.
- Note: If a Brownian motion with drift is observed at points y₁,..., y_n and μ and σ are not fixed, there are priors so that we can do conjugate analysis, and analytically get a posterior process. However this posterior process is not a Gaussian process.

The stochastic process

$$G_t = G_0 e^{\mu t + \sigma B_t}$$

where $G_0 > 0$ is called *geometric Brownian motion* with drift parameter μ and variance parameter σ^2 .

► $\log(G_t)$ is a Gaussian process with expectation $\log(G_0) + \mu t$ and variance $t\sigma^2$.

Show that

•
$$E(G_t) = G_0 e^{t(\mu + \sigma^2/2)}$$

•
$$Var(G_t) = G_0^2 e^{2t(\mu + \sigma^2/2)} (e^{t\sigma^2} - 1)$$

Natural model for things that develop by multiplication of random independent factors, rather than addition of random independent increments. Example: Stock prices.

Modelling stock price with geometric Brownian motion

- ► To model the price of a stock, it is reasonable to
 - use a continuous-time stochastic model.
 - consider the *factor* with which it changes, not the differences in prices.
 - consider normal distributions for such factors (?)
 - use a parameter for the trend of the price, and one for the variability of the price.
 - make a Markov assumption(???)
- This leads to using a geometric Brownian motion as model

$$G_t = G_0 e^{\mu t + \sigma B_t}$$

In this context σ is called the *volatility* of the stock.

Example: A stock price is modelled with G₀ = 67.3, μ = 0.08, σ = 0.3. What is the probability that the price is above 100 after 3 years?

- When making investments, there is always a range of choices, some of which are sometimes called "risk free". Such investments may pay a fixed interest.
- ▶ When interests are compounded frequently, a reasonable model is that an investment of G_0 has a value G_0e^{rt} after time *t*, where *r* is the "risk free" investment rate of return.
- A common way to take this alternative into account is to instead "discount" all other investments with the factor e^{-rt}.
- ▶ For example, the value of a stock may be modelled with

$$e^{-rt}G_t = e^{-rt}G_0e^{\mu t + \sigma B_t} = G_0e^{(\mu - r)t + \sigma B_t}$$

So discounting corresponds to adjusting the trend parameter from μ to $\mu-{\it r}.$

- A (European) stock option is a right (but not obligation) to buy a stock at a given time t in the future for a given price K.
- How much can you expect to earn from a stock option at that future time?
- We get that (see next page)

$$\mathsf{E}\left(\max\left(G_t-K,0\right)\right) = G_0 e^{t(\mu+\sigma^2/2)} \operatorname{Pr}\left(B_1 > \frac{\beta-\sigma t}{\sqrt{t}}\right) - K \operatorname{Pr}\left(B_1 > \frac{\beta}{\sqrt{t}}\right)$$

where $\beta = (\log(K/G_0) - \mu t)/\sigma$.

Example: A stock price is modelled with $G_0 = 67.3$, $\mu = 0.08$, $\sigma = 0.3$. What is the expected payoff from an option to buy the stock at 100 in 3 years?

Proof

Prove the algebraic identity

$$e^{\sigma x}$$
 Normal $(x; 0, t) = e^{\sigma^2 t/2}$ Normal $(x; \sigma t, t)$

▶ Then, defining $\beta = (\log(K/G_0) - \mu t)/\sigma$, we get $\mathsf{E}(\max(G_t - K, 0)) = \mathsf{E}(\max(G_0 e^{\mu + \sigma B_t} - K, 0))$ $= \int_{-\infty}^{\infty} \max \left(G_0 e^{\mu t + \sigma x} - K, 0 \right) \operatorname{Normal}(x; 0, t) \, dx$ $= \int_{0}^{\infty} \left(G_0 e^{\mu t + \sigma x} - K \right) \operatorname{Normal}(x; 0, t) \, dx$ $= G_0 e^{\mu t} \int_a^\infty e^{\sigma x} \operatorname{Normal}(x; 0, t) dx - K \int_a^\infty \operatorname{Normal}(x; 0, t) dx$ $= G_0 e^{t(\mu + \sigma^2/2)} \int_0^\infty \operatorname{Normal}(x; \sigma t, t) \, dx - K \int_0^\infty \operatorname{Normal}(x; 0, t) \, dx$ $= G_0 e^{t(\mu + \sigma^2/2)} \Pr\left(B_1 > \frac{\beta - \sigma t}{\sqrt{t}}\right) - K \Pr\left(B_1 > \frac{\beta}{\sqrt{t}}\right)$

► A stochastic process $(Y_t)_{t \ge 0}$ is a *martingale* if for $t \ge 0$

$$\blacktriangleright \mathsf{E}(Y_t \mid Y_r, 0 \le r \le s) = Y_s \text{ for } 0 \le s \le t.$$

$$\models \mathsf{E}(|Y_t|) < \infty.$$

- Brownian motion is a martingale.
- $(Y_t)_{t\geq 0}$ is a martingale with respect to $(X_t)_{t\geq 0}$ if for all $t\geq 0$

$$\blacktriangleright \mathsf{E}(Y_t \mid X_r, 0 \le r \le s) = Y_s \text{ for } 0 \le s \le t.$$

 $\models \mathsf{E}(|Y_t|) < \infty.$

► Example: Define $Y_t = B_t^2 - t$ for $t \ge 0$. Then Y_t is a martingale with respect to Brownian motion.

Let G_t be Geometric Brownian motion. We get

$$E(G_t | B_r, 0 \le r \le s)$$

$$= E(G_0 e^{\mu t + \sigma B_t} | B_r, 0 \le r \le s)$$

$$= E(G_0 e^{\mu (t-s) + \sigma (B_t - B_s)} e^{\mu s + \sigma B_s} | B_r, 0 \le r \le s)$$

$$= E(G_{t-s}) e^{\mu s + \sigma B_s}$$

$$= G_0 e^{(t-s)(\mu + \sigma^2/2)} e^{\mu s + \sigma B_s}$$

$$= G_s e^{(t-s)(\mu + \sigma^2/2)}$$

• We see that G_t is a martingale with respect to B_t if and only if $\mu + \sigma^2/2 = 0$.

The Black-Scholes formula for option pricing

- It is not easy to get a reliable estimate for μ in the model of a stock, even if one can get an estimate of σ, the volatility.
- A possibility is to assume that the discounted value of the stock is a martingale relative to Brownian motion: So on average it is not better or worse to invest in the stock than in a "risk free" investment.

This means that
$$\mu - r + \sigma^2/2 = 0$$
, i.e., $\mu = r - \sigma^2/2$.

Plugging this into the formula for the value of a stock option and multiplying with e^{-rt} we get

$$e^{-rt} \operatorname{E}(\max(G_t - K, 0)) = G_0 \operatorname{Pr}\left(B_1 > \frac{\beta - \sigma t}{\sqrt{t}}\right) - e^{-rt} \operatorname{K} \operatorname{Pr}\left(B_1 > \frac{\beta}{\sqrt{t}}\right)$$

where $\beta = (\log(K/G_0) - (r - \sigma^2/2)t)/\sigma$.

- This is the Black-Scholes formula for option pricing.
- With r = 0.02, $G_0 = 67.3$, $\sigma = 0.3$, t = 3, and K = 70, we get the discounted stock option price 3.39.