
Review: Brownian motion

▶ A process {Bt}t≥0 where Bt ∼ Normal(0, t). No parameters.

▶ Independent normally distributed increments.

▶ Continuous paths that are nowhere differentiable.

▶ Connection to random walks: The Donsker principle.

▶ Gaussian processes.

▶ Restarting Brownian motions at stopping times.
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The distribution of the first hitting time

▶ Given a ̸= 0 what is the distribution of the first hitting time
Ta = min {t : Bt = a}?

▶ We prove below that

1

Ta
∼ Gamma

(
1

2
,
a2

2

)
▶ Assuming that a > 0 and using that Ta is a stopping time we get for

any t > 0 that Pr
(
B1/t > a | Ta < 1/t

)
= Pr

(
B1/t−Ta

> 0
)
= 1

2 .
▶ We also have

Pr
(
B1/t > a | Ta < 1/t

)
=

Pr
(
B1/t > a,Ta < 1/t

)
Pr (Ta < 1/t)

=
Pr

(
B1/t > a

)
Pr (Ta < 1/t)

.

▶ It follows that Pr (Ta < 1/t) = 2Pr
(
B1/t > a

)
and so

Pr

(
1

Ta
< t

)
= 2Pr

(
B1/t < a

)
− 1 = 2Pr

(
B1 < at1/2

)
− 1.

▶ Taking the derivative w.r.t. t we get the Gamma density

π1/Ta
(t) = 2

1√
2π

exp

(
−1

2
(at1/2)2

)
a

2
t−1/2.
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Maximum of Brownian motion

▶ Define Mt = max0≤s≤t Bs .

▶ We may compute for a > 0 (using result from previous page)

Pr (Mt > a) = Pr (Ta < t) = 2Pr (Bt > a) = Pr (|Bt | > a)

▶ Thus Mt has the same distribution as |Bt |, the absolute value of Bt .

▶ Example: What is the probability that M3 > 5?

▶ Example: Find t such that Pr (Mt ≤ 4) = 0.9.
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Zeros of Brownian motion

▶ Let L be the last zero in (0, 1) of Brownian motion. (In other words,
L = max{t : 0 < t < 1,Bt = 0}. Then

L ∼ Beta

(
1

2
,
1

2

)
.

▶ Outline of proof on next page.

▶ Consequence: Let Lt be the last zero in (0, t). Then

Lt/t ∼ Beta

(
1

2
,
1

2

)
.

▶ Note: The probability that Brownian motion has at least one zero in
(r , t) for 0 ≤ r < t is 1− Pr (Lt < r).

▶ Note: The cumulative distribution for the Beta density can be
computed with the arcsin function:

Pr (Lt < r) =

∫ r/t

0

Beta

(
s;

1

2
,
1

2

)
ds =

2

π
arcsin

(√
r

t

)
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Outline of proof

Pr (L > s) =

∫ ∞

−∞
Pr (L > s | Bs = t) Normal(t; 0, s) dt

= 2

∫ ∞

0

Pr (M1−s > t) Normal(t; 0, s) dt

= 2

∫ ∞

0

2Pr (B1−s > t) Normal(t; 0, s) dt

= 4

∫ ∞

0

∫ ∞

t

Normal(r ; 0, 1− s) Normal(t; 0, s) dr dt

= . . .

=
1

π

∫ 1

s

1√
x(1− x)

dx

=

∫ 1

s

Beta

(
x ;

1

2
,
1

2

)
dx
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Brownian bridge

▶ Define a Gaussian process Xt by conditioning Brownian motion Bt

on B1 = 0. Then Xt is a Brownian bridge.
▶ If 0 < s < t < 1 then (Bs ,Bt ,B1) is multivariate normal with

E ((Bs ,Bt ,B1)) = (0, 0, 0), Var ((Bs ,Bt ,B1)) = Σ =

s s s
s t t
s t 1

 .

Conditioning on B1 = 0 and using properties of the multivariate
normal (or see Dobrow) we get E (Xt) = 0 and

Cov (Xs ,Xt) = s − st.

▶ Define another Gaussian process with Yt = Bt − tB1. Then we see
that E (Yt) = 0 and (when 0 < s < t < 1)

Cov (Ys ,Yt) = s − st.

It follows that this is identical to the Brownian bridge defined above.
▶ Example: Estimate by simulation: If a Brownian motion fulfills

B1 = 0, what is the probability that it has values below −1?
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Brownian motion with a drift

▶ For real µ and σ > 0 define the Gaussian process Xt as

Xt = µt + σBt

This is Brownian motion with a drift, and is often a more useful
model than standard Brownian motion.

▶ Examples:
▶ The amount won or lost in a game of chance that is not fair

(approximating discrete winnings / losses with continuous changes).
▶ The score difference between two competing sports teams

(approximating this difference with a continuous function).

▶ This is a Gaussian process with continuous paths and stationary and
independent increments.

▶ Example: Computing the chance of winning team game based on
intermdiate score.

▶ Note: If a Brownian motion with drift is observed at points
y1, . . . , yn and µ and σ are not fixed, there are priors so that we can
do conjugate analysis, and analytically get a posterior process.
However this posterior process is not a Gaussian process.
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Geometric Brownian motion

▶ The stochastic process

Gt = G0e
µt+σBt

where G0 > 0 is called geometric Brownian motion with drift
parameter µ and variance parameter σ2.

▶ log(Gt) is a Gaussian process with expectation log(G0) + µt and
variance tσ2.

▶ Show that
▶ E(Gt) = G0e

t(µ+σ2/2)

▶ Var(Gt) = G 2
0 e

2t(µ+σ2/2)(etσ
2

− 1)

▶ Natural model for things that develop by multiplication of random
independent factors, rather than addition of random independent
increments. Example: Stock prices.
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Modelling stock price with geometric Brownian motion

▶ To model the price of a stock, it is reasonable to
▶ use a continuous-time stochastic model.
▶ consider the factor with which it changes, not the differences in

prices.
▶ consider normal distributions for such factors (?)
▶ use a parameter for the trend of the price, and one for the variability

of the price.
▶ make a Markov assumption(???)

▶ This leads to using a geometric Brownian motion as model

Gt = G0e
µt+σBt

In this context σ is called the volatility of the stock.

▶ Example: A stock price is modelled with G0 = 67.3, µ = 0.08,
σ = 0.3. What is the probability that the price is above 100 after 3
years?
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Discounting future values

▶ When making investments, there is always a range of choices, some
of which are sometimes called “risk free”. Such investments may
pay a fixed interest.

▶ When interests are compounded frequently, a reasonable model is
that an investment of G0 has a value G0e

rt after time t, where r is
the “risk free” investment rate of return.

▶ A common way to take this alternative into account is to instead
“discount” all other investments with the factor e−rt .

▶ For example, the value of a stock may be modelled with

e−rtGt = e−rtG0e
µt+σBt = G0e

(µ−r)t+σBt

So discounting corresponds to adjusting the trend parameter from µ
to µ− r .

11 / 16



Stock options

▶ A (European) stock option is a right (but not obligation) to buy a
stock at a given time t in the future for a given price K .

▶ How much can you expect to earn from a stock option at that
future time?

▶ We get that (see next page)

E (max (Gt − K , 0)) = G0e
t(µ+σ2/2) Pr

(
B1 >

β − σt√
t

)
−K Pr

(
B1 >

β√
t

)
where β = (log(K/G0)− µt)/σ.

▶ Example: A stock price is modelled with G0 = 67.3, µ = 0.08,
σ = 0.3. What is the expected payoff from an option to buy the
stock at 100 in 3 years?
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Proof

▶ Prove the algebraic identity

eσx Normal(x ; 0, t) = eσ
2t/2 Normal(x ;σt, t)

▶ Then, defining β = (log(K/G0)− µt) /σ, we get

E (max (Gt − K , 0)) = E
(
max

(
G0e

µ+σBt − K , 0
))

=

∫ ∞

−∞
max

(
G0e

µt+σx − K , 0
)
Normal(x ; 0, t) dx

=

∫ ∞

β

(
G0e

µt+σx − K
)
Normal(x ; 0, t) dx

= G0e
µt

∫ ∞

β

eσx Normal(x ; 0, t) dx − K

∫ ∞

β

Normal(x ; 0, t) dx

= G0e
t(µ+σ2/2)

∫ ∞

β

Normal(x ;σt, t) dx − K

∫ ∞

β

Normal(x ; 0, t) dx

= G0e
t(µ+σ2/2) Pr

(
B1 >

β − σt√
t

)
− K Pr

(
B1 >

β√
t

)
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Martingales

▶ A stochastic process (Yt)t≥0 is a martingale if for t ≥ 0
▶ E(Yt | Yr , 0 ≤ r ≤ s) = Ys for 0 ≤ s ≤ t.
▶ E(|Yt |) < ∞.

▶ Brownian motion is a martingale.

▶ (Yt)t≥0 is a martingale with respect to (Xt)t≥0 if for all t ≥ 0
▶ E(Yt | Xr , 0 ≤ r ≤ s) = Ys for 0 ≤ s ≤ t.
▶ E(|Yt |) < ∞.

▶ Example: Define Yt = B2
t − t for t ≥ 0. Then Yt is a martingale

with respect to Brownian motion.
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Geometric Brownian motion can be a martingale

Let Gt be Geometric Brownian motion. We get

E (Gt | Br , 0 ≤ r ≤ s)

= E
(
G0e

µt+σBt | Br , 0 ≤ r ≤ s
)

= E
(
G0e

µ(t−s)+σ(Bt−Bs )eµs+σBs | Br , 0 ≤ r ≤ s
)

= E (Gt−s) e
µs+σBs

= G0e
(t−s)(µ+σ2/2)eµs+σBs

= Gse
(t−s)(µ+σ2/2)

▶ We see that Gt is a martingale with respect to Bt if and only if
µ+ σ2/2 = 0.
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The Black-Scholes formula for option pricing

▶ It is not easy to get a reliable estimate for µ in the model of a stock,
even if one can get an estimate of σ, the volatility.

▶ A possibility is to assume that the discounted value of the stock is a
martingale relative to Brownian motion: So on average it is not
better or worse to invest in the stock than in a “risk free”
investment.

▶ This means that µ− r + σ2/2 = 0, i.e., µ = r − σ2/2.

▶ Plugging this into the formula for the value of a stock option and
multiplying with e−rt we get

e−rt E (max (Gt − K , 0)) = G0 Pr

(
B1 >

β − σt√
t

)
−e−rtK Pr

(
B1 >

β√
t

)
where β = (log(K/G0)− (r − σ2/2)t)/σ.

▶ This is the Black-Scholes formula for option pricing.

▶ With r = 0.02, G0 = 67.3, σ = 0.3, t = 3, and K = 70, we get the
discounted stock option price 3.39.
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