MVE550 2022 Lecture 14
 Remaining part of Dobrow Chapter 8 Review. Where to go from here. Exam tips

Petter Mostad

Chalmers University
December 15, 2022

Review: Modelling stock prices with geometric Brownian motion

- The stochastic process

$$
G_{t}=G_{0} e^{\mu t+\sigma B_{t}}
$$

where B_{t} is Brownial motion is called geometric Brownian motion with drift parameter μ and variance parameter σ^{2}.

- Fixing parameters G_{0} (start price) μ (trend) and σ (volatility) gives a model for a stock price.
- The option of buying the stock at future time t for price K has value $\mathrm{E}\left(\max \left(G_{t}-K, 0\right)\right)=G_{0} e^{t\left(\mu+\sigma^{2} / 2\right)} \operatorname{Pr}\left(B_{1}>\frac{\beta-\sigma t}{\sqrt{t}}\right)-K \operatorname{Pr}\left(B_{1}>\frac{\beta}{\sqrt{t}}\right)$ where $\beta=\left(\log \left(K / G_{0}\right)-\mu t\right) / \sigma$.
- If r is the "risk free" rate of return, the return on the stock investment may be modelled with

$$
e^{-r t} G_{t}=e^{-r t} G_{0} e^{\mu t+\sigma B_{t}}=G_{0} e^{(\mu-r) t+\sigma B_{t}}
$$

Martingales

- A stochastic process $\left(Y_{t}\right)_{t \geq 0}$ is a martingale if for $t \geq 0$
- $\mathrm{E}\left(Y_{t} \mid Y_{r}, 0 \leq r \leq s\right)=Y_{s}$ for $0 \leq s \leq t$.
- $\mathrm{E}\left(\left|Y_{t}\right|\right)<\infty$.
- Brownian motion is a martingale.
- $\left(Y_{t}\right)_{t \geq 0}$ is a martingale with respect to $\left(X_{t}\right)_{t \geq 0}$ if for all $t \geq 0$
- $\mathrm{E}\left(Y_{t} \mid X_{r}, 0 \leq r \leq s\right)=Y_{s}$ for $0 \leq s \leq t$.
- $\mathrm{E}\left(\left|Y_{t}\right|\right)<\infty$.
- Example: Define $Y_{t}=B_{t}^{2}-t$ for $t \geq 0$. Then Y_{t} is a martingale with respect to Brownian motion.

Geometric Brownian motion can be a martingale

Let G_{t} be Geometric Brownian motion. We get

$$
\begin{aligned}
& \mathrm{E}\left(G_{t} \mid B_{r}, 0 \leq r \leq s\right) \\
= & \mathrm{E}\left(G_{0} e^{\mu t+\sigma B_{t}} \mid B_{r}, 0 \leq r \leq s\right) \\
= & \mathrm{E}\left(G_{0} e^{\mu(t-s)+\sigma\left(B_{t}-B_{s}\right)} e^{\mu s+\sigma B_{s}} \mid B_{r}, 0 \leq r \leq s\right) \\
= & \mathrm{E}\left(G_{t-s}\right) e^{\mu s+\sigma B_{s}} \\
= & G_{0} e^{(t-s)\left(\mu+\sigma^{2} / 2\right)} e^{\mu s+\sigma B_{s}} \\
= & G_{s} e^{(t-s)\left(\mu+\sigma^{2} / 2\right)}
\end{aligned}
$$

- We see that G_{t} is a martingale with respect to B_{t} if and only if $\mu+\sigma^{2} / 2=0$.

The Black-Scholes formula for option pricing

- It is not easy to get a reliable estimate for μ in the model of a stock, even if one can get an estimate of σ, the volatility.
- A possibility is to assume that the discounted value of the stock is a martingale relative to Brownian motion: So on average it is not better or worse to invest in the stock than in a "risk free" investment.
- This means that $\mu-r+\sigma^{2} / 2=0$, i.e., $\mu=r-\sigma^{2} / 2$.
- Plugging this into the formula for the value of a stock option and multiplying with $e^{-r t}$ we get
$e^{-r t} \mathrm{E}\left(\max \left(G_{t}-K, 0\right)\right)=G_{0} \operatorname{Pr}\left(B_{1}>\frac{\beta-\sigma t}{\sqrt{t}}\right)-e^{-r t} K \operatorname{Pr}\left(B_{1}>\frac{\beta}{\sqrt{t}}\right)$
where $\beta=\left(\log \left(K / G_{0}\right)-\left(r-\sigma^{2} / 2\right) t\right) / \sigma$.
- This is the Black-Scholes formula for option pricing.
- With $r=0.02, G_{0}=67.3, \sigma=0.3, t=3$, and $K=70$, we get the discounted stock option price 3.39.

Review: Stochastic processes Dobrow

- Chapters 2, 3: Discrete time discrete state space Markov chains.
- Chapter 4: Branching processes.
- Chapter 5: MCMC
- Chapter 6: Poisson processes.
- Chapter 7: Continuous time discrete state space Markov chains.
- Chapter 8: Brownian motion.

Review: Introduction to Bayesian inference Compendium

- Basic ideas of Bayesian inference.
- The idea of conjugacy and how to use it in computations.
- Discretization and computation of integrals used in low dimensions.
- The idea and usage of Hidden Markov Models.
- Using MCMC for Bayesian inference. Gibbs sampling.
- Specifically we looked at Bayesian inference for:
- Discrete time discrete state space Markov chains.
- Hidden Markov models (HMM).
- Branching processes.
- Poisson processes (also spatial).

Going forward: Stochastic processes

- Infinite collections of random variables. We have only looked at a few examples.
- For example Brownian motion: An entire PhD level course exclusively about Brownian motion was given last year by Jeff Steif.
- A number of proofs actually need measure theory, which is not covered in this course.
- For those with an interest, I strongly recommend Chapter 9 of Dobrow, introducing Stochastic Calculus!
- Some related courses of possible interest:
- MVE170 / MSG800 Basic Stochastic Processes, given by Patrik Albin in reading period 2.
- MVE140 / MSA150 Foundations of Probability Theory, given by Sergei Zuev in reading period 2.
- TMS165 / MSA350 Stochastic Analysis, given by Patrik Albin in reading period 1.
- TMV100 / MMA100 Integration Theory, given by Jeff Steif in reading period 1.

Going forward: Stochastic modelling and stochastic differential equations

- Some more advanced courses that may not be given every year: MVE330 Stochastic Processes; MMA630 Computational methods for SDEs; MSF600 Advanced topics in probability. A course in Brownian Motion (Jeff Steif).
- Generally, stochastic modelling means probabilistic modelling of real phenomena, whether the model is a stochastic process or a finite collection of random variables.
- A large number of application areas: Basically any system with uncertainty.
- Stochastic Differential Equations (SDE) and Stochastic Partial Differential Equations (SPDE), see Dobrow Chapter 9 for an introduction. Active area at Chalmers Mathematical Sciences.

Going forward: Bayesian inference

- Stochastic models to be used for real applications almost always need fitting (inference) of their parameters using data.
- In Bayesian inference, we specify an entire stochastic model, also for the parameters (using a prior). Then we use for prediction the conditional distribution given the observed data.
- In practice, the main difference in most cases to frequentist inference is that Bayesian inference averages over a posterior for the parameters instead of using a single parameter estimate.
- In this course, we have looked at Bayesian inference for
- Small toy models
- Discrete-time discrete state space Markov chains, and Hidden Markov Models (HMM).
- Branching processes
- In assignments: Poisson processes and Continuous-time discrete state space Markov chains.
- We have also looked at how to use Markov chains (MCMC) for Bayesian inference.

Going forward: Bayesian inference

- The intentions in this course:
- To give a small introduction to Bayesian thinking.
- Exemplify some simple inference tools for our stochastic processes.
- Bayesian inference is part of many later statistics courses, but I would like to advertise my own course, MVE187 / MSA101
Computational methods for Bayesian inference, in reading period 1. Some subjects covered:
- More on conjugacy and simple computations.
- Much more on MCMC.
- Hamiltonian MCMC.
- Information theory and the EM algorithm.
- State space models.
- Graphical models.
- Variational Bayes.

Studying for the exam

- Make sure you have some general understanding of all parts of the course.
- Make sure you have tried out and played around with the small R codes on Canvas. For me, trying out actual computation of things is very helpful to make them more concrete.
- You don't have to memorise proofs but going through them can be a great way to increase understanding.
- DO OLD EXAM QUESTIONS! Note how some, during the pandemic, had "all aids allowed", while you will be allowed a "Chalmers approved calculator".

General exam tips

- Write clearly, and precisely, with full sentences. If I'm not sure what you mean, I will not necessarily make the interpretation that is most in your interest.
- As long as you are clear and cover everything you want to say, writing short is better than writing long.
- Make sure you answer all parts of a question, and answer exactly what is asked for!
- Make sure you attempt to answer all questions: I cannot give you any points for a question if you do not answer anything.
- If you have any doubts about the interpretation of a question, do not hesitate to ask me! I plan to visit the exam around 9:30 and $11: 30$. The exam personnel may also contact me by phone.
- Distribute your time wisely.

