1154 CHAPTER 17  Second-Order Differential Equations

17.1 Second-Order Linear Equations

A second-order linear differential equation has the form

@ P + 00 5+ Ry = 6ty

SRR s e Y

where P, Q, R, and G are continuous functions. We saw in Section 9.1 that equau‘(;’
of this type arise in the study of the motion of a spring. In Section 17.3 we will furth
pursue this application as well as the application to electric circuits. ;
In this section we study the case where G(x)
tions are called homogeneous linear equations.
homogeneous differential equation is

= 0, for all x, in Equation 1. §

uch equ
Thus the form of a second-q :

rder ling
PL d
P) o7 + 009 S5+ Ry = 0
b4 dx

If G(x) # 0 for some x, Equation 1 is
17.2.

Two basic facts enable us to solve homo
says that if we know two solutions y1 and
nation y = ¢,y, + ¢,y, is also a solution.

nonhomogeneous and is discussed in$

geneous linear equations. The first of
¥2 of such an equation, then the linear co

E] Theorem If y(x) and y,(x) are both solutions of the linear homogeneous
equation (2) and ¢, and c, are any constants, then the function

y(xX) = c1yi(x) + coya(x)

is also a solution of Equation 2.

PROOF Since y; and y, are solutions of Equation 2, we have

P(x)y{ + Q()yi +R(x)y, = 0
and Px)y + 0(x)yt + R(x)y, = 0
Therefore, using the basic rules for differentiation, we have
P(x)y" + 0(x)y" + R(x)y
= P(ewyr + e32)" + Qe + cap)’ + RE)(eon + €
= PO)(ewy! + cay) + Q()(eryt + cays) + RO + @)
= alPyi' + Q()yi + R&y] + c:[P(x)ys + Q@)ys + B

=¢1(0) + c,(0) =0

Thus y = ¢y, + ¢,y is a solution of Equation 2.
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The other fact we need is given by the following theorem, which is proved in more
advanced courses. It says that the general solution is a linear combination of two linearly
independent solutions Y1 and y,. This means that neither Y1 10T y; is a constant multiple

of the other. For instance, the functions f(x) = x?and g(x) = 5x%are linearly dependent,
but f(x) = e*and g(x) = xe* are linearly independent.

@ Theorem If y, and ¥2 are linear]

y independent solutions of Equation 2 on
an interval, and P(x) is never 0, then

the general solution is given by

y(x) = ciyi(x) + c2y2(x)

where ¢, and ¢, are arbitrary constants.

Theorem 4 is very useful because it says that if we know rwo particular linearly inde-
pendent solutions, then we know every solution.
In general, it’s not easy to discover particular solutions to a second-order linear equa-

tion. But it is always possible to do so if the coefficient functions P, Q, and R are constant
functions, that is, if the differential equation has the form

@ ay" +by +cy=0 T

where a, b, and ¢ are constants and a # 0.

It’s not hard to think of some likely candidates for particular solutions of Equation 5
if

we state the equation verbally. We are looking for a function ¥ such that a constant
times its second derivative »" plus another constant times ' plus a third constant times y
is equal to 0. We know that the exponential function y = e’* (where r is a constant) has
the property that its derivative is a constant multiple of itself: y' = re™, Furthermore,

Y" = r’e™ If we substitute these expressions into Equation 5, we see that y=e'

solution if

“isa

ar’e™ + bre™ + ce™ = ()
or (ar? + br + ¢)e™ =0

But e™ is never 0. Thus Y = e™is a solution of Equation 5 if r is a root of the equation

(6] L ar* +br+c=0 T

Equation 6 is called the auxiliary equation (or characteristic equation) of the differen-
tial equation ay” + by’ + ¢y = 0. Notice that it is an algebraic equation that is obtained
from the differential equation by replacing y” by r% y' by r, and yby 1.

Sometimes the roots , and r2 of the auxiliary equation can be found by factoring. In
other cases they are found by using the quadratic formula:

o ~b+ Vb —dac _ —b—/b? — 4ac
= 27 Vo —4ac

2a fa = 2a

We distinguish three cases according to the sign of the discriminant b2 — 44c¢.
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In Figure 1 the graphs of the basic
solutions f(x) = e**and g(x) = ¢ > of
the differential equation in Example 1
are shown in blue and red, respectively.
Some of the other solutions, linear
combinations of f and g, are shown

in black.

FIGURE 1
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CASEIl b* — dac > 0
In this case the roots r; and r, of the auxiliary equation are rea] and distiné
and y, = e"* are two linearly independent solutions of Equation 5. (Note th;
a constant multiple of e"*.) Therefore, by Theorem 4, we have the following

If the roots r; and r, of the auxiliary equation ar® + br + ¢ = ( are 1
unequal, then the general solution of ay” + by’ + cy = 01is

y=ce" + ce™*

EXAMPLE 1 Solve the equation y” + y’ — 6y = 0.
SOLUTION The auxiliary equation is

rr+r—6=@r—-2)(r+3)=0

whose roots are r = 2, —3. Therefore, by (8), the general solution of the given diff
ential equation is

y =cie® + ce™*

We could verify that this is indeed a solution by differentiating and substituting int
differential equation.

d? d
y+—}i—y=0.

EXAMPLE 2 Solve 3 T 2y

SOLUTION To solve the auxiliary equation 3r* + r — 1 = 0, we use the quadratic
formula:

-1+,13

6

Since the roots are real and distinct, the general solution is

y = cre(T1H/Bs/6 4 crel~1=VB)x/s

CASENl b2 — 4ac =0 -
In this case r; = r,; that is, the roots of the auxiliary equation are real and equal. Let
'denote by r the common value of r, and r,. Then, from Equations 7, we have

@ r=—i so 2ar+b=0
2a

. . _ o
We know that y, = e’ is one solution of Equation 5. We now verify that y, = xé" !

also a solution:

ay, ¥ bys ¥ ¢y, = a(2re™ F r’xe™) ¥ b(e™ F rxe”™) F cxe™

(2ar + b)e™ + (ar* + br + c)xe'™

=0(e™) +0(xe™)=0
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2ar + b = 0 by Equations 9; in the second term, ar> + br + ¢ =0

In the first term,
™ are linearly

because r is a root of the auxiliary equation. Since y; = ¢" and y, = xe
independent solutions, Theorem 4 provides us with the general solution.

If the auxiliary equation ar® + br + ¢ = 0 has only one real root r, then
the general solution of ay” + by + cy=0is

e e

y — Cler'x + czxel',\'

EXAMPLE 3 Solve the equation 4y” + 12y" + 9y = 0.
+ 9 = 0 can be factored as

ows the basic solutions

/2 and g(x) = xe ¥ in

and some other members of
tions. Notice that all

of solutions i o + 3)2 iy

SOLUTION The auxiliary equation 4r* + 12r

so the only root is r = —%. By (10) the general solution is

y = ce ¥ + cyxe~ >

CASENI b* — 4ac <0
2 In this case the roots r; and r, of the auxiliary’ equation are complex numbers. (See

Appendix H for information about complex numbers.) We can write

n=a+ i r,=a— i

where « and B are real numbers. [In fact, « = —b/(2a), B = +/4ac — b? /(2a).] Then,

using Euler’s equation
e® =cos + isinf
from Appendix H, we write the solution of the differential equation as

= C1€r'x =+ Cz(:‘r!x = Cle(aﬂ'ﬂ)x + Cze(a—iﬂ)x
y

= Cje**(cos Bx + isin Bx) + Cre®(cos Bx — isin Bx)

I

e“[(C, + Cz) CcoS B.X + l(Cl - Cz) sin Bx]

= ¢*(c; cos Bx + casin Bx)
= C, + Cy, ¢z = i(C, — Cy). This gives all solutions (real or complex) of the

where ¢
nts ¢, and c; are real. We

differential equation. The solutions are real when the consta
summarize the discussion as follows.

If the roots of the auxiliary equation ar? + br + ¢ = 0 are the complex

nurnber&rq;a—+—iB,—nzia;iB.,_then_the . general solution of

ay" + by + cy=20is T
y = e**(c; cos Bx + c25in Bx)

e ———— T T T
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Figure 3 shows the graphs of the solu-
tions in Example 4, f(x) = e  cos 2x
and g(x) = e** sin 2x, together with
some linear combinations. All solutions
approach 0 as x — —oo,

FIGURE 3

Figure 4 shows the graph of the solu-
tion of the initial-value problem in
Example 5. Compare with Figure 1.

FIGURE 4

EXAMPLE 4 Solve the equation y" — 6y’ + 13y = 0.
SOLUTION The auxiliary equation is r* — 6r + 13 = 0. By the quadratic formula, the

roots are
6 = /36 — 52 6 ++—16
r= =5

2 2

=3+2

By (11), the general solution of the differential equation is

y = e*(c1cos 2x + ¢, sin 2x)

8 Initial-Value and Boundary-Value Problems

An initial-value problem for the second-order Equation 1 or 2 consists of finding a 5o
tion y of the differential equation that also satisfies initial conditions of the form

y(xo) = yo ¥'(x0) =y
where yo and y, are given constants. If P, Q, R, and G are continuous on an interval ap,
P(x) # 0 there, then a theorem found in more advanced books guarantees the existenc
and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate th
technique for solving such a problem.
EXAMPLE 5 Solve the initial-value problem
y'+y —6y=0 y0) =1 y(0) =0
SOLUTION From Example 1 we know that the general solution of the differential equa-
tion is
y(x) = cre® + cre™*
Differentiating this solution, we get
y'(x) = 2c182’ - 3C2€_3x

To satisfy the initial conditions we require that
(12] YO)=ci+c=1
[13] y(0) = 2¢; — 3¢, =0
From (13), we have ¢, = %cl and so (12) gives
cl+%cl=l cl=% cz=%
Thus the required solution of the initial-value problem is

—3x -

y =322+ 2,

“wiN

EXAMPLE 6 Solve the initial-value problem
y'+y=0 y(0) =2 y'(0) =3

SOLUTION The auxiliary equation is 7 + 1 = 0, or > = —1, whose roots ar¢.
Thus @ = 0, B8 = 1, and since e¢®* = 1, the general solution is

y(x) = ci1cos x + ¢ sin x

Since Y'(x) = —cisinx + ¢, cos x
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The solution to Example 6 is graphed in  the initial conditions become
igure 5. It appears to be a shifted sine
1 urve and, indeed, you can verify that y(0) =¢; =2 y(0)=¢ =3

other way of writing the solution is

J13sin(x + ¢) where tan ¢ =% Therefore the solution of the initial-value problem is
y(x) = 2cos x + 3sin x 5]

A boundary-value problem for Equation 1 or 2 consists of finding a solution y of the
differential equation that also satisfies boundary conditions of the form

¥(¥0) = yo y(a) =y

In contrast with the situation for initial-value problems, a boundary-value problem does
not always have a solution. The method is illustrated in Example 7.

EXAMPLE 7 Solve the boundary-value problem
Y'+2'+y=0 y(0) =1 y(1)=3
SOLUTION The auxiliary equation is
P+2r+1=0 o (r+1?2=0
whose only root is r = —1. Therefore the general solution is
¥(x) =cie™ + cyxe™*
6 shows the graph of the solu- The boundary conditions are satisfied if
Y0 =ca =1
Y1) =cie + et =3

The first condition gives ¢; = 1, so the second condition becomes
s e+ el =3
| Solving this equation for c, by first multiplying through by e, we get
1+ ¢ =3¢ e} ;=3¢ —1
Thus the solution of the boundary-value problem is

y=e*+ (3e — xe™* EH

Summary: Solutions of ay” + by +c¢cy=0

Rootsof ar? + br + ¢ =0 General solution

ry, r; real and distinct Yy =cie" + ce""
n=r=r y=rce* + cxe”™

r, r, complex: @ * iB y = e**(c; cos Bx + c; sin Bx)
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17.1 EXERCISES

1-13 Solve the differential equation.

1.y ' —y —6y=0 2. y"=6y'+9y=0

3. y"+2y=0 4. y"+y - 12y=0
5.4y"+4y +y=0 6. 9y" +4y=0
7. 3y" =4y’ 8. y=y”
9. y'—4y' +13y=0 10. 3y" +4y' -3y =90
d’y , dy
M 2—=+2—= -y =
dr? a ?
d’R dR
12 — + 6— + 34R =
dr? dr
dav
13. 3 +4 +3V=0
dr* d

14-16 Graph the two basic solutions along with several other

solutions of the differential equation. What features do the
solutions have in common?

d’y dy

WM 4—= — 3L g e

4 dx? dx y=0

d’y dy

15, —=2 +22 45
dx? T gy =0
d’ dy

16. 2—= + =X, _
de* | dx g

17-24 Solve the initial-value problem.

17. y" + 3y =0, y(0) =1, y'(0)=3

18. y" =2y =3y =0, y(0)=2, y'(0) =2
19.9y" +12y' +4y =0, »0) =1, y() =0
20. 3y" = 2y' =y =0, y(0)=0, y'(0)=—4
21. 2y" + 5y +3y =0, y(0) = 3, y(0)=-4

17.2 Nonhomogeneous Linear Equations

In this section we learn how to solve second-order nonhomogeneous linear ¢
equations with constant coefficients, that is, equations of the form

(1

where a, b, and c are constants and G is a continuous function. The related b

equation

2)

22. y"+3y=0, y(0)=1, y(0) =3
2. y" =y = 12y=0, y1)=0, y(1)=1
28.2y"+y' —y=0, y(0)=3, y(0) =3

25-32 Solve the boundary-value problem, if possible,
25. y" + 16y =0, y(0) = —3, y(/8) =2

26. y" + 6y’ =0, y(0) =1, y(1)=0

27. y" +4y =0, y(0) =5, y(mw/4) =3

28. y" =4y, y(0)=1, y(1)=0

29. y" =y, y0) =1, y1) =2

30. 4y" —4y' + y =10, y(0) =4, y2)=0

3. y" + 4y + 20y =0, y(0) =1, () =2
32. )" +4y' + 20y =0, y(0) =1, y(m) = e

33. Let L be a nonzero real number. |
(a) Show that the boundary-value problem y” + )y =
¥(0) = 0, y() = 0 has only the trivial solution ¥

for the cases A = O and A < 0. ,

(b) For the case A > 0, find the values of ) for which f

problem has a nontrivial solution and give the com;i
sponding solution. =

|
o

s

34, If a, b, and c are all positive constants and y(x) is a solu
of the differential equation ay” + by' + ¢y =0, sho
lim,—= y(x) = 0.

35. Consider the boundary-value problem y” — 2y’ +
¥@a) = ¢, y(b) = d. :
(2) If this problem has a unique solution, how are @
related? =
(b) If this problem has no solution, how are a, b, ¢,
related?
(c) If this problem has infinitely many solutions,
a, b, c, and d related?

ay” + by + ¢y = G(x)

ay" + by +cy=0
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is called the complementary equation and plays an important role in the solution of the

g original nonhomogeneous equation (1).
£
v, E @ Theorem The general solution of the nonhomogeneous differential equa-
i tion (1) can be written as
é Y(x) = y,(x) + y.(x)
E

where y, is a particular solution of Equation I and y. is the general solution of
E 7 the complementary Equation 2.
£

: PROOF We verify that if Y is any solution of Equation 1, then y — Yy is a solution of
i the complementary Equation 2. Indeed

ay = %) + by = 3) +c(y - y,) = ay” — ayy + by' = by, + cy — cy,
f = (@y" + by' + cy) ~ (ayy + by, + cy,)
=Gx —-Gx) =0
This shows that every solution is of the form y(x) = y,(x) + Ye(x). It is easy to

check that every function of this form is a solution. B

We know from Section 17.1 how to solve the complementary equation. (Recall that
the solution is y, = ¢, Y1+ c2y, where y; and y, are linearly independent solutions of
Equation 2.) Therefore Theorem 3 says that we know the general solution of the non-
homogeneous equation as soon as we know a particular solution ¥»- There are two methods
for finding a particular solution: The method of undetermined coefficients is straightfor-
ward but works only for a restricted class of functions G. The method of variation of
parameters works for every function G but is usually more difficult to apply in practice.

8 The Method of Undetermined Coefficients
We first illustrate the method of undetermined coefficients for the equation

ay” + by’ + cy = G(x)

where G(x) is a polynomial. It is reasonable to guess that there is a particular solution
Yp that is a polynomial of the same degree as G because if Y is a polynomial, then
ay" + by + cyisalso a polynomial. We therefore substitute ¥»(x) = a polynomial (of
the same degree as G) into the differential equation and determine the coefficients.

EXAMPLE 1 Solve the equation y” + y' — 2y = x2
SOLUTION The auxiliary equation of y” + y’ — 2y = () is
rP+r—2=(@- Dr+2)=0
with roots r = 1, —2. So the solution of the complementary equation is
Ye = cie* + cre™
Since G(x) = x%isa polynomial of degree 2, we seek a particular solution of the form

»(xX) =Ax*+ Bx + C
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Figure 1 shows four solutions of the
differential equation in Example 1
in terms of the particular solution
¥, and the functions f(x) = e* and

g(x) =™

‘ 8 Yp +2f,+,3g

FIGURE 1

Figure 2 shows solutions of the dif-
ferential equation in Example 2

in terms of y, and the functions

f(x) = cos 2x and g(x) = sin 2x.
Notice that all solutions approach o as
x — o0 and all solutions (except y,)
resemble sine functions when x is
negative.

FIGURE 2

Then y, = 2Ax + B and y,' = 2A so, substituting into the given differential €quatiop
we have :

(24) + (2A).c + B) — 2(Ax* + Bx + C) = x*
or —2Ax*+ (2A — 2B)x + 2A + B — 2C) = x? _
Polynomials are equal when their coefficients are equal. Thus
—24=1 2A-2B=0 2A+B—-2C=0

The solution of this system of equations is

= = = _3
A particular solution is therefore
1 1 3
W) =~ = b =3
and, by Theorem 3, the general solution is
Y=Yty =cie* + e — x> — jx — 32

If G(x) (the right side of Equation 1) is of the form Ce**, where C and k are constan
then we take as a trial solution a function of the same form, y,(x) = Ae**, because
derivatives of e** are constant multiples of e**.

EXAMPLE 2 Solve y” + 4y = 3~

SOLUTION The auxiliary equation is 2 + 4 = 0 with roots *2i, so the solution of
complementary equation is

Y(x) = c;cos 2x + ¢, sin 2x

For a particular solution we try y,(x) = Ae®. Then y, = 3Ae* and y, = 94¢*. S
tuting into the differential equation, we have

9Ae® + 4(Ae™®) = e

so 134e* = e™and A = % Thus a particular solution is

yp(x) = %eh

and the general solution is

y(x) = c;cos 2x + ¢, sin 2x + %el‘

If G(x) is either C cos kx or C sin kx, then, because of the rules for differentid
sine and cosine functions, we take as a trial particular solution a function of the

yp(x) = Acos kx + Bsin kx
EXAMPLE 3 Solve y” + y' — 2y = sin x.
SOLUTION We try a particular solution

Yp(x) = Acos x + Bsin x
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Then Y, = —Asinx + Bcos x ¥y = —Acos x — Bsin x
so substitution in the differential equation gives
(—Acosx — Bsinx) + (—Asinx + Bcos x) — 2.(Acosx + Bsin x) = sin x
or (=3A + B)cos x + (—A — 3B) sinx = sin x
This is true if
-3A+B=0 and —A—3B=1

The solution of this system is

so a particular solution is
yp(x) = —t5cos x — 5 sinx

In Example 1 we determined that the solution of the complementary equation is
ye = c1e* + c¢”*. Thus the general solution of the given equation is

2x

y(x) = cre* + cre™™ — I‘IG(COS x + 3sinx) ]

If G(x) is a product of functions of the preceding types, then we take the trial solu-
tion to be a product of functions of the same type. For instance, in solving the differential
equation

y" + 2y" + 4y = xcos 3x
we would try
¥5(x) = (Ax + B) cos 3x + (Cx + D) sin 3x

If G(x) is a sum of functions of these types, we use the easily verified principle of
superposition, which says that if y,, and y,, are solutions of

ay" + by',~+ cy = G\(x) ay” + by + ¢y = Gy(x)
respectively, then y,, + y,, is a solution of

ay” + by + ¢y = Gi(x) + Ga(x)

EXAMPLE 4 Solve y" — 4y = xe* + cos 2x.

SOLUTION The auxiliary equation is r* — 4 = 0 with roots *2, so the solution of the
complementary equation is y.(x) = c;e?* + c,e”**. For the equation y" — 4y = xe*
we try

V5 (x) = (Ax + B)e*

Then y,, = (Ax + A -+ B)e", y;, = (Ax + 2A + B)e”, so substitution in the equation
gives
(Ax + 2A + B)e* — 4(Ax + B)e* = xe*

or (=3Ax + 2A — 3B)e* = xe*




CHAPTER 17 Second-Order Differential Equations

ire 3 we show the particular

0y, = y» T ¥p, of the differ-

.quation in Example 4. The

olutions are given in terms of
e*and g(x) = >

5

ypt2f+g \

Yty

[E3

—%, and

Je*

The graphs o
 differential e
 shown in Figi

Thus —3A = 1and 24 — 3B=0,50 A = —3, B

=TI\

In(®) = (=3x =
For the equation y" — 4y = cos 2x, we try
Yp,(x) = Ccos 2x + Dsin2x
Substitution gives
—4Ccos 2x — 4D sin 2x — 4(Ccos 2x + D sin 2x) = cos 2x
or —8Ccos 2x — 8D sin 2x = cos 2x
Therefore —8C = 1, —8D = 0, and
Yp(X) = —§ cos 2x
By the superposition principle, the general solution is
Y=Y+ Y, + Yo, = cre” + cZe‘zl*' —(tx+%)e* — Lcos2x
Finally we note that the recommended trial solution y, sometimes turns out to b
solution of the complementary equation and therefore can’t be a solution of the nonhomo-

geneous equation. In such cases we multiply the recommended trial solution by x (
x?if necessary) so that no term in y,(x) is a solution of the complementary equatio

EXAMPLE 5 Solve y" + y = sin x.

SOLUTION The auxiliary equation is 72 + 1 = 0 with roots =i, so the solution of
complementary equation is

Ye(x) = c1cos x + ¢y 8in x
Ordinarily, we would use the trial solution

yp(x) = Acos x + Bsin x
but we observe that it is a solution of the complementary equation, so instead We'

yp(x) = Axcos x + Bxsin x
Then yo(x) = Acos x — Axsin x + Bsin x + Bxcos x
Yp(x) = —2A sin x — Axcos x + 2Bcos x — Bxsin x

Substitution in the differential equation gives

Yo + ¥, = —2Asin x + 2Bcos x = sin x
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The graphs of four solutions of the S0OA = _%, B =0, and
ifferential equation in Example 5 are

~ shown in Figure 4. yp(x) = —3xcos x

The general solution is

y(x) = cicos x + cpsin x — ixcos x ]

We summarize the method of undetermined coefficients as follows:

Summary of the Method of Undetermined Coefficients

1. If G(x) = e*P(x), where Pis a polynomial of degree n, then try
¥p(x) = €“Q(x), where Q(x) is an nth-degree polynomial (whose coefficients
are determined by substituting in the differential equation).

2. If G(x) = €**P(x) cos mx or G(x) = e**P(x) sin mx, where P is an nth-degree
polynomial, then try

Yo(x) = €“Q(x) cos mx + €“R(x) sin mx
where Q and R are nth-degree polynomials.

Modification: If any term of y, is a solution of the complementary equation,
multiply y, by x (or by x* if necessary).

EXAMPLE 6 Determine the form of the trial solution for the differential equation
y' = 4y' + 13y = e* cos 3x.

SOLUTION Here G(x) has the form of part 2 of the summary, where k = 2y = 3, and
P(x) = 1. So, at first glance, the form of the trial solution would be

¥p(x) = (A cos 3x + B sin 3x)

But the auxiliary equation is r*> — 4r + 13 = 0, with roots » = 2 = 3, so the solution
of the complementary equation is

Ye(x) = €**(c, cos 3x + ¢, sin 3x)

This means that we have to multiply the suggested trial solution by x. So, instead, we
use

Yp(x) = xe*(A cos 3x + B sin 3x) =

B The Method of Variation of Parameters

Suppose we have already solved the homogeneous equation ay” + by’ + cy = 0 and
written the solution as

(4] ¥(x) = cyi(x) + cay,(x)

where y; and y, are linearly independent solutions. Let’s replace the constants (or param-
eters) ¢, and ¢, in Equation 4 by arbitrary functions u;(x) and u,(x). We look for a particu-
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lar solution of the nonhomogeneous equation ay” + by + ¢y = G(x) of the form

(5] ) = @ (%) + w(x) y() |

(This method is called variation of Parameters because we have varied

the parameteys
¢1 and ¢, to make them functions.) Differentiating Equation 5, we get

(6] Yo = (uiyt + usy,) + (wyy! + Uy;)

Since u; and u, are arbitrary functions, we can impose two conditions on them. QOpe

condition is that Yy 15 a solution of the differential equation; we can choose the other

condition o as to simplify our calculations. In view of the expression in Equation 6, let’s
impose the condition that

uiyr + usy, =0

Then Yo = uiyi + wys + uyp + Uy y;

Sublstituting in the differential equation, we get
a(uiyl + ujys + wyl' + wpys) + b(uyy) + wry1) + cuy + wpy,) = G
or
ui(ay! + by| + cy) + wyayy + by: + cy,) + a(uiyi + wyys) = G
But y; and y, are solutions of the complementary equation, so
ayl + byl + cy; =0 and ay; + by; + cy, =0

and Equation 8 simplifies to
(9] a(uiyl + uy3) = G

Equations 7 and 9 form a system of two equations in the unknown functions ui and .

After solving this system we may be able to integrate to find u; and u, and then the par
ticular solution is given by Equation 5.

EXAMPLE 7 Solve the equation y” + y =tan x, 0 < x < /2.

SOLUTION The auxiliary equation is r* + 1 = 0 with roots *i, so the solution of

Y'+y=0isy(x) = ¢, sin x + €2¢0s x. Using variation of parameters, we seek a
solution of the form

Yo(x) = w(x) sin x + us(x) cos x

Then ¥» = (ui sin x + u} cos x) + (uy cos x — u, sin x)

Set

uisinx + ubcos x = 0
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Then Yy = U{COSX — upsinx — uSinx — u; cos x
For y, to be a solution we must have
(11] Y, + ¥, =uicosx — u;sinx = tan x
Solving Equations 10 and 11, we get
ui(sin® + cos*x) = cos x tan x
| : p—
ui =sinx u(x) = —cos x

(We seek a particular solution, so we don’t need a constant of integration here.) Then,
from Equation 10, we obtain

) sinx sinx _ cos’x — 1
A u = — uy = — = = COSXx — secx
jgure 5 shows four solutions of the COS X coS x CoSs x
rential equation in Example 7.
So uy(x) = sin x — In(sec x + tan x)

(Note that sec x + tan x > 0 for 0 < x < 7/2.) Therefore

¥5(x) = —cos x sinx + [sin x — In(sec x + tan x)] cos x

5 = —cos x In(sec x + tan x)
““““ and the general solution is

y(x) = c¢;sin x + c,cos x — cos x In(sec x + tan x) H

7.2 EXERCISES

Solve the differential equation or initial-value problem 11-12 Graph the particular solution and several other solutions.

q p p p
the method of undetermined coefficients. What characteristics do these solutions have in common?
T2y —8y=1-2x2 11. " + 3y’ + 2y =cosx 12, y"+4y=¢7"
3y" = sin 2x
!ty = g2 13-18 Write a trial solution for the method of undetermined

coefficients. Do not determine the coefficients.

2y + 2y = x .
Bty =xte 13. y" + 9y =e™ + x*sinx

3 4y, ey 5y = g7* .
3 14. y" + 9y’ = xe ¥ cos mx
2y + 5y =1+ ¢~
' - 15. y" =3y’ + 2y =e* + sinx

2 +Sy=sinx, y0)=1, y(0)=1
ool x ( .y " — 3 X
Y= xe™, y0) =0, y'(0)=1 16. y" + 3y 4y = (x> + x)e
"= xe, y0) =2, y©0) =1 17. y" + 2y’ + 10y = x%¢ " cos 3x

D=ecosx, y0)=1, y(0)=2 18. y" + 4y = ™ + xsin 2x




