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1 Introduction

When hearing the word vector, many people picture an arrow; a directed magnitude. The velocity
vector of a moving car, for instance, is an arrow pointing in the current direction of travel, and
the length of this vector determines the speed; a longer velocity vector means a higher speed.

Those who have studied linear algebra also know how these arrow vectors can be represented
as columns, lists of numbers that specify how far an arrow points in each direction:

v =

[
x
y

]
.

You also know how matrices can be used to transform vectors:[
cos(60◦) − sin(60◦)
sin(60◦) cos(60◦)

]
︸ ︷︷ ︸

R

[
x
y

]
︸︷︷︸
v

=

[
x cos(60◦)− y sin(60◦)
x sin(60◦) + y cos(60◦)

]
︸ ︷︷ ︸

Rv

=
1

2

[
x−
√

3y√
3x + y

]
.

This particular matrix R performs a 60◦ counter-clockwise rotation of any 2D vector:
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2 POLYNOMIALS

Mathematicians use a more abstract definition of vectors. Rather than going through the full
definition, let me just say that a vector space is a collection of objects that can 1. be combined
into other objects of the same type, and 2. be multiplied by real numbers to scale them, and the
objects in such a collection are then called vectors. Importantly, abstract vectors do not need to
have a clear geometric interpretation, although they may.

The arrows we discussed above satisfy this definition, because any two arrows can be added
to form a new arrow,

and multiplying an arrow by some real number changes its length by a proportionate amount.
In this sense, the collection of all such arrows satisfy the definition of a vector space, hence the
arrows themselves can be regarded as vectors (objects that form a vector space).

There are many other things that also satisfy this abstract definition of a vector space. One
such example of vectors is: Polynomials.

2 Polynomials

Instead of studying the collection of all possible polynomials of arbitrary large degree, which is
a very large collection, let us instead study polynomials of a particular degree. For example, the
collection of all degree 3 polynomials is denoted

P3 =
{
a0 + a1x + a2x

2 + a3x
3
∣∣a0, a1, a2, a3 ∈ R

}
.

Similarly, for any natural number n = 0, 1, 2, 3, . . ., the collection of all degree n polynomials is

Pn =
{
a0 + a1x + a2x

2 + · · ·+ anx
n
∣∣a0, a1, a2, . . . , an ∈ R

}
.

Any degree 2 polynomial p(x) = a0 + a1x + a2x
2 can be thought of as a degree 3 polynomial

p(x) = a0 + a1x + a2x
2 + 0x3

whose last coefficient a3 = 0. The collections therefore contain each other:

P0 ⊂ P1 ⊂ P2 ⊂ P3 ⊂ · · ·

From now on, let’s focus on degree 3 polynomials to keep the number of terms manageable.
In order for the collection P3 to satisfy the definition a vector space, we need some way to

combine two arbitrary polynomials of degree 3 into a new polynomial of degree 3, and some way
to multiply polynomials of degree 3 by real numbers. There are natural ways to do both of these
things: First, given any two polynomials of degree 3, such as

p(x) = x3 + 3x− 4, and q(x) = 0.2x3 − x2 + 1,

2



4 DIFFERENTIATION

we simply compute their sum,

(p + q)(x) = (x3 + 3x− 4) + (0.2x3 − x2 + 1) =

= 1.2x3 − x2 + 3x− 3,

and observe that we obtain another polynomial of degree 3. So the operation that combines two
polynomials to form a new polynomial of the same degree, is simply to compute their sum.

Second, multiplication by real numbers also produce degree 3 polynomials:

10 ∗ q(x) = 10 ∗ (0.2x3 − x2 + 1) = 2x3 − 10x2 + 10.

The collection P3 therefore satisfies the aforementioned definition of an abstract vector space, and
the objects it contain (i.e. polynomials of degree 3) can rightfully be called vectors. Naturally,
there is nothing special about degree 3 polynomials. It is equally true that, say, P2, P5 and in
general Pn forms a vector space.

3 Basis vectors

Observe that the general expression of a degree 3 polynomial,

p(x) = a0 + a1x + a2x
2 + a3x

3, (1)

can be interpreted as a linear combination of the polynomials 1, x, x2, and x3. Any polynomial
of degree 3 is uniquely characterized by the specific coordinates a0, a1, a2, a3 used in the linear
combination (1), which means that 1, x, x2, and x3 forms a basis of P3. It also allows us to stop
writing out the x’s and just represent each polynomial by a list of coordinates ak:

p(x) = a0 + a1x + a2x
2 + a3x

3 =


a0
a1
a2
a3

 . (2)

Because we need 4 numbers a0, a1, a2, a3 to specify any degree 3 polynomial - equivalently,
because there are 4 different basis vectors 1, x, x2, and x3, the vector space P3 has dimension 4.

More generally, the vector space Pn of polynomials with degree n has dimension n+1, because
you need n+ 1 different numbers a0, a1, a2, . . . , an to specify any such polynomial - equivalently,
because Pn has a basis consisting of the vectors 1, x, x2, . . . , xn.

4 Differentiation

It’s an interesting fact that the very much analytic process of differentiation (and, as we shall see
later, integration) of polynomials is a linear transformation between vector spaces; If we write
any polynomial of degree 3 as a column vector like in equation (2), we can compute its derivative
(which is a degree 2 polynomial) using matrix multiplication. To show this, first recall that the
derivative of x2 is 2x, the derivative of x3 is 3x2, and so on. In general,

d

dx
xk = kxk−1. (3)
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4 DIFFERENTIATION

The derivative of any polynomial p(x) = a0+a1x+a2x
2+a3x

3 can then be obtained by computing
the derivative of each xk term individually, using equation (3):

d

dx
p(x) =

d

dx

(
a0 + a1x + a2x

2 + a3x
3
)

=

= a0

(
d

dx
1

)
+ a1

(
d

dx
x

)
+ a2

(
d

dx
x2

)
+ a3

(
d

dx
x3

)
=

= a0 ∗ 0 + a1 ∗ 1 + a2 ∗ 2x + a3 ∗ 3x2 =

= a1 + 2a2x + 3a3x
2.

Differentiating a polynomial always reduces its degree by 1, as illustrated in the above example
where the general degree 3 polynomial p(x) = a0 + a1x + a2x

2 + a3x
3 turned into the degree 2

polynomial p′(x) = a1 + 2a2x + 3a3x
2. This means that the differentiation process is a function

d

dx
: P3 → P2.

This function is also linear, because you compute derivatives term by term. In other words, the
differentiation process is a linear transformation that turns degree 3 polynomials into degree 2
polynomials. In fact, we can write down its matrix by examining how it changes column vectors:
If an arbitrary degree 3 polynomial is written as a column vector

p(x) = a0 + a1x + a2x
2 + a3x

3 =


a0
a1
a2
a3

 ∈ P3,

then we know its derivative is the column vector

p′(x) = a1 + 2a2x + 3a3x
2 =

 a1
2a2
3a3

 ∈ P2,

and the matrix that maps p(x) to its derivative p′(x) can be written as the differentiation matrix

D =

0 1 0 0
0 0 2 0
0 0 0 3

 .

Indeed, 0 1 0 0
0 0 2 0
0 0 0 3



a0
a1
a2
a3

 =

0a0 + 1a1 + 0a2 + 0a3
0a0 + 0a1 + 2a2 + 0a3
0a0 + 0a1 + 0a2 + 3a3

 =

 a1
2a2
3a3

.
Interestingly, the differentiation matrix D is not invertible, which reflects something we know
from analysis: Differentiation cannot be fully undone; you cannot fully recover any polynomial
p(x) by only knowing its derivative p′(x), because the constant a0 disappears in the process.

More generally, differentiation of degree n polynomials is also a linear transformation

d

dx
: Pn → Pn−1,

and one can write down its (n− 1)× n matrix.
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5 INTEGRATION

5 Integration

Just like differentiation is a linear transformation

d

dx
: P3 → P2

that reduces the degree of a polynomial by 1, integration is a linear transformation∫
dx : P2 → P3

that instead increases the degree of a polynomial by 1. To see this, first recall that the (indefinite)
integral of each basis element xk is given by∫

xk dx =
1

k + 1
xk+1,

where we ignore the additive constant +C for simplicity by setting C = 0. Integration is then
defined for arbitrary polynomials

p(x) = a0 + a1x + a2x
2 =

a0a1
a2

 ∈ P2

by integrating each term separately:∫
p(x) dx =

∫
a0 + a1x + a2x

2 dx =

= a0

(∫
1 dx

)
+ a1

(∫
x dx

)
+ a2

(∫
x2 dx

)
=

= a0(x) + a1

(
1

2
x2

)
+ a2

(
1

3
x3

)
=

= a0x +
a1
2
x2 +

a2
3
x3 =


0
a0
a1/2
a2/3

 ∈ P3.

This “integrate term by term” process precisely means that integration is a linear transformation,
hence it can be written in terms of column vectors and matrix multiplication:

∫
p(x) dx = a0x +

a1
2
x2 +

a2
3
x3 =


0
a0
a1/2
a2/3

 =


0 0 0
1 0 0
0 1/2 0
0 0 1/3


a0a1
a2

.
In other words, integration of any degree 2 polynomial is performed by the integration matrix

I =


0 0 0
1 0 0
0 1/2 0
0 0 1/3

 .
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5 INTEGRATION

While differentiation is not invertible (because you lose the constant a0), integration is invertible;
if you integrate a polynomial p(x), you can then differentiate the resulting polynomial

∫
p(x) dx

to get back the same polynomial p(x) that you started with. In terms of matrices, differentiation
followed by integration produces a linear transformation ID : P3 → P3 given by

0 0 0
1 0 0
0 1/2 0
0 0 1/3


︸ ︷︷ ︸

I

0 1 0 0
0 0 2 0
0 0 0 3


︸ ︷︷ ︸

D


a0
a1
a2
a3

 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

ID


a0
a1
a2
a3

 =


0
a1
a2
a3

 , (4)

confirming our previous claim: First differentiating (D) and then integrating (I) a polynomial
doesn’t give us back the original polynomial, because we lose the constant a0.

In contrast, first integrating and then differentiating a polynomial produces a linear trans-
formation DI : P2 → P2 which can be written in terms of matrices as

0 1 0 0
0 0 2 0
0 0 0 3


︸ ︷︷ ︸

D


0 0 0
1 0 0
0 1/2 0
0 0 1/3


︸ ︷︷ ︸

I

a0a1
a2

 =

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

DI

a0a1
a2

 =

a0a1
a2

 , (5)

and which does give us back the polynomial we started with.
Not only does this example show an interesting relation between analysis and linear algebra,

namely that highly analytic processes such as differentiation and integration can be thought of
as linear transformations, and (at least in the case of polynomials) be written on matrix form. It
also shows that certain matrices, such as the differentiation matrix D, can have a right-inverse
without having a left-inverse. Indeed, equation (5) shows that multiplying D from the right by
the integration matrix I produces the 3× 3 identity matrix

DI =

1 0 0
0 1 0
0 0 1

 ,

but equation (4) shows that multiplying D from the left by I doesn’t produce the 4× 4 identity
matrix:

ID =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Again, this reflects the fact that integration can be undone by differentiating, while differentiation
cannot be undone by integrating, since we lose all information about the constant a0.
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