
Advanced Algorithms Course.

Lecture Notes. Part 1

These notes are based on several materials, first and foremost:

Kleinberg, Tardos, Algorithm Design.

Reading advice: Instead of just reading through the text, it is more

rewarding to stop after each paragraph, rest a moment, amd think ahead:

“Could I answer the current question myself? What is the next logical step?

What am I wondering about?” Then continue reading ...

Approximation Algorithms

or: “My problem is NP-complete – what now?”

Actually this could be the slogan of the first parts of the course. Most

likely, NP-complete problems cannot be solved exactly in polynomial time.

But they are abundant, and we do need their solutions in practice. What

can we do about that? One option is to approximate optimal solutions in

polynomial time, and give up on exact optimal solutions.

We start right away with an example of the approach, and we use it to

explain the general issues, step by step.

Load Balancing

Suppose that n jobs with processing times tj have to be done, where j =

1, . . . , n. Every job must be executed by one of m machines. Let Ti be the

load, i.e., the total processing time, of machine i, where i = 1, . . . ,m. The

goal is to compute an assignment that minimizes T := maxi Ti.

Some clarifications: Only the tj are given. The Ti values are part of the

solution (not of the problem instance): Ti is the sum of processing times

of all jobs assigned to machine i. Furthermore, every job must be done
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completely on the chosen machine; it cannot be split and assigned to several

machines.

Imagine a schedule where all jobs assigned to a machine are executed

there, one after another. Then the objective T we want to minimize is the

time when all jobs on all machines are finished. Therefore we call T the

makespan. Clearly, we would like to finish a pile of jobs as early as possible.

Moreover, if the “agents” doing the jobs are human workers rather than

machines, then good load balancing is also a matter of fairness.

Bad news first: This problem is NP-complete, already for m = 2 ma-

chines. This can be shown by a simple polynomial-time reduction from

Subset Sum. (We assume that you already know that Subset Sum is NP-

complete, and that you even see how to do the reduction. If not: Read

about these prerequisites again, think hard, seek help, etc. This is the level

where we start from.)

Therefore we look now for algorithms that give good approximate solu-

tions. But still they should need only polynomial time. We use T ∗ to denote

the optimal makespan for an instance. (This star notation for optimal values

is quite common in optimization.) In general we will not achieve T = T ∗,

but hopefully a makespan T close to T ∗.

A natural greedy algorithm comes to mind: Pass through the jobs and

assign every job to some machine with currently smallest load.

Due to NP-completeness, this cannnot always be optimal, and in fact,

there are strikingly small counterexamples: Consider m = 2 machines and

processing times 3, 3, 2, 2, 2. Then obviously T ∗ = 6, whereas the greedy

solution yields T = 7. (Do the steps of the algorithm, then you will see.)

Still this might be acceptable in practice.

Did the algorithm incidentally work quite well for this example, or is it

reasonable in general? Intuitively, this greedy rule should not be too bad ...

But first we have to make this vague question more precise. Perhaps like

this: How far is the greedy solution away from an optimal solution in the

worst case (for all instances)? Such worst-case results give reliability. In the

same way as worst-case time bounds are guarantees on the running times,

worst-case bounds on the value of a solution guarantee a certain quality of

the output.

But still the question is too imprecise in this form. What measure of the

distance of solutioos shall we adopt?
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What about T − T ∗? A moment of thinking reveals that analyzing the

difference is pointless: If we scale an instance by multiplying all processing

times by a factor c, then also the makespan of any algorithm is multiplied

by c, but the problem is not changed at all. Most importantly, the difference

T −T ∗ is unbounded, i.e., the maximum over all instances would be infinite.

What about T/T ∗? The ratio is not changed by scaling (more formally, it

is an invariant), and there is a chance that the maximum over all instances

is finite. These properties make the approximation ratio T/T ∗ a suitable

measure of quality of an algoriithm.

But how can we actually analyze the approximation ratio of a given

algorithm?

The exact ratio T/T ∗, as a function of the instance, is too complicated

and depends on many irrelevant small details of the instances. A more

practical approach to getting guarantees is to try and prove some good

upper bound on T/T ∗.

For an upper bound on T/T ∗ it suffices to find some lower bound on T ∗

and some upper bound on T . Then, clearly, T/T ∗ is at most the ratio of

these bounds.

But beware: The situation is not symmetric. A lower bound on T ∗ deals

with optimal solutions. This is a property of the problem and has nothing

to do with any algorithm. As opposed to this, an upper bound on T deals

with the output of the algorithm.

For analyzing our Load Balancing problem, we start with T ∗. (The

order is arbitrary. This is just the easier part.) Two obvious lower bounds,

directly inferred from the problem, are T ∗ ≥ max tj and T ∗ ≥
∑n

j=1 tj/m,

that is, the longest job and the average load. (Why are they lower bounds?)

Any upper bound on T has to take into account how the algorithm

actually works. We could ask what specifically makes the output bad. That

is, we look at the job j that ends last in the schedule, because this job is

“responsible” for the makespan. Moreover, we look at the machine i that

has the highest load Ti in the end.

As a side remark, it would be a mistake to simply assume j = n. The job

that ends last is not necessarily the last job in the given sequence, because

it may be followed by some short jobs which do not further increase the

makespan.
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Continuing our analysis: Why has the algorithm finally assigned job j

to machine i?

Because machine i had a minimum load, just before job j has been added.

And this load was Ti − tj = T − tj . It follows that every machine k has a

load Tk ≥ T − tj . Summation over all machines yields
∑m

k=1 Tk ≥ m(T − tj).

Hence T − tj ≤
∑m

k=1 Tk/m =
∑m

l=1 tl/m ≤ T ∗ due to the “averaging” lower

bound. Since also T ∗ ≥ tj , this finally yields T ≤ T ∗ + tj ≤ 2T ∗. That is,

we have proved an approximation ratio T/T ∗ ≤ 2.

Thus we have obtained an upper bound on the approximation ratio. This

is great but could also be disappointing: In this example, the solution could

be twice as expensive as the optimum. Can the algorithm be improved? Or

is the algorithm actually better, and only the analysis pretends too gener-

ous bounds? In hindsight, the analysis used only very simple algebra and

combinatorics – maybe it missed some opportunities for tighter bounds?

It turns out that this analysis was as good as it could be: There exist

instances where T is actually nearly 2T ∗. A nasty case consists of many

short jobs (that the greedy algorithm assigns in a balanced way) followed by

one long job (that must be assigned to one machine, thereby destroying the

balance). Using a certain number and length of short jobs, one can enforce

a ratio arbitrarily close to 2; we skip these details and only stress the idea.

“I’m so proud: I have finished my puzzle in only 2 years.

On the package it says 3–4 years.”

Definitions

After this introductory example we collect some general definitions.

A minimization (maximization) problem is a computational problem

that asks for a solution that minimizes (maximizes) some objective value.

A c-approximation algorithm for a minimization problem is an algorithm

that runs in polynomial time and outputs a solution with an objective value

being at most c times as large as the minimum value. The approximation

ratio c > 1 can be a constant, but it may also be a function of, e.g., the

instance size. For maximization problems, the definitions are similar, but

the objective value must be at least c times as large as the maximum value,

where c < 1.
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And a linguistic remark: Please avoid the phrase “more optimal” in

mathematical texts. Here the word “optimal” means already “the best” -

so what should be better?

Load Balancing 1.5

Instances that need an approximation ratio nearly 2 point out a weakness of

the greedy algorithm above: it considers the jobs in the given order. We can

easily improve that. Intuitively, the shortest jobs should be assigned last,

such that they cannot stick out too much. We first sort and re-index the

jobs such that t1 ≥ . . . ≥ tn, then we apply the original greedy algorithm.

Can we prove a better approximation ratio? As the algorithm has be-

come a bit smarter, the (better) bounds are a little more tricky as well.

First of all, the Load Balancing problem with m ≥ n is trivial: put every

job on a different machine and obtain T = T ∗. Thus we can suppose m < n

henceforth.

Since now n ≥ m+ 1, at least two of the m+ 1 longest jobs must be put

on the same machine. This yields T ∗ ≥ 2tm+1, which is stronger than the

one-job lower bound we had before. This is already a good sign.

Moreover, we can reuse notations and results from the previous analysis,

since it was done for arbitrary sequences and is therefore still valid for the

special case of a sorted sequence.

If the machine i with the maximum final load T does job j only, then

the solution is optimal, since T = tj ≤ T ∗, actually T = Tj . Hence we can

suppose that machine i executes two or more jobs. Since the m longest jobs

are assigned first, to m different machines, but job j was assigned last to

machine i, we have j ≥ m + 1. Hence tj ≤ tm+1 ≤ 0.5T ∗. As the previous

analysis gave T ≤ T ∗+ tj , this yields T ≤ 1.5T ∗, a significant improvement.

We conclude with some general comments.

One can try and find more lower bounds, and for every instance take the

maximum of them. But how do we know where to stop? What lower bounds

do we need for a good analysis? Unfortunately, there is no general answer.

In the above example, the two lower bounds turned out to be sufficient for

a tight analysis. But we see this only afterwards. Choosing bounds is a

problem-specific trial-and-error business, like many things in this field.

Also, the example should not give the impression that approximation
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ratios are always obtained as ratios of some global lower and upper bounds.

There are other methods, like pairing up the elements of the two solutions

and comparing their costs.

Finally, you may have missed a statement on the time complexity. The

above algorithms clearly have low polynomial complexity. We have skipped

the time analysis, but not because it is unimportant. It is simply not the

focus here. We assume that you have already seen plenty of time estimates

previously.

Center Selection

Next we discuss an approximation algorithm for a problem of completely

different nature, to get an impression of the diversity of the topic.

A metric space is any set of points equipped with a distance function d

that is symmetric and satisfies the triangle inequality. Let S be a set of n

sites (points) from a metric space, and k a given number. The goal is to

select a set C of k centers (which are also points in the same metric space)

so as to minimize the maximum distance of a site to the nearest center.

To help imagination, one may think of points in the plane with the usual

Euclidean distance, but the problem is defined for arbitrary metric spaces.

We can assume |S| > k, since otherwise the problem is trivial.

As a motivation: We may want to place facilities (shops or fire stations

or radio stations, etc.) in a region, such that no inhabitant is far away from

the next facility.

The objective can be written as

min
|C|=k

max
s∈S

min
c∈C

d(s, c).

This looks a bit bulky. But by defining the disk with center c and radius

r to be the set of all points x with d(c, x) ≤ r, the Center Selection problem

can be rephrased: Find a set of k disks of minimum (equal) radius r that

together cover S.

The following greedy algorithm selects, in k steps, some set C ⊂ S. Start

with C := {s}, where s ∈ S is an arbitrary site. Then do the following k−1

times: Take a site s ∈ S being farthest from its nearest center in C, and put

it in C. More formally, pick some s ∈ S with maximum minc∈C d(s, c) and

do C := C ∪ {s}.
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It obviously runs in polynomial time, and it is a 2-approximation algo-

rithm. More precisely, we can show: Let C be the set of centers produced

by the algorithm. If a solution with radius r exists, then the k disks with

centers in C and radius 2r cover S as well.

For the proof, let D denote a set of disks of radius r that together c over

S, and let U denote the union of all disks with centers in C and radius 2r.

For the situation after any number of steps of the algorithm we claim the

following: Either S ⊆ U , or there exists some D ∈ D with currently D 6⊆ U ,

but with D ⊆ U after the next step of the algorithm.

Since |D| = k, this claim implies that we reach S ⊆ U after at most

k steps. It remains to prove the claim. So assume that S ⊆ U is false.

That is, some site has a distance larger than 2r from its nearest center in

C. Since the algorithm chooses some site s with maximum distance to its

nearest center, this distance is also larger than 2r. It follows s /∈ U . But

there exists some D ∈ D with s ∈ D. This yields D 6⊆ U . Now the algorithm

adds the disk D′ with center s and radius 2r to U . Furthermore, the triangle

inequality yields D ⊆ D′. Hence, after this step we have D ⊆ U , as claimed.

The proof we presented here is shorter and goes more straight to the

goal than the one in the textbook.

Simple Vertex Cover Approximation

A vertex cover in an undirected graph G = (V,E) is a node set C ⊆ V

being incident to all edges of E. That is, for every edge e ∈ E, at least

one node of e must be in C. Finding a vertex cover of minimum size is a

classsic NP-complete problem. But we can very easily solve it within an

approximation ratio 2.

The this end we use the concept of a matching. A matching in a graph

is an edge set M ⊆ E whose edges are pairwise disjoint, i.e., no two edges

in M share a node. First we determine a matching M that is maximal in

the sense that no further edges of E can be added to M . (This does not

necessarily mean that M is a matching of maximum size.)

A maximum-size matching can also be computed in polynomial time, but

this is complicated. Here we only need a maximal matching in the above

weaker sense, and we can obtain it in a greedy way: Start with M := ∅
and successively add an edge to M that is disjoint to all others, as long as

possible. Hence the final M is a maximal matching.
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Let C simply be the set of all nodes in the edges of M . Then C is a

vertex cover: If not, then some edge e exists where both nodes are not in

M , which contradicts the maximality of M .

Furthermore, every vertex cover contains at least one node from every

edge in M , by the definition of vertex covers. It follows |C∗| ≥ |M | even for

the smallest vertex cover C∗. Hence we have |C| = 2|M | ≤ 2|C∗|. Simple,

isn’t it?
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