
Advanced Algorithms Course.

Lecture Notes. Part 2

Weighted Set Cover

This is a very fundamental problem abstracted from a variety of applications.

Given a set U of n elements, and m subsets Si ⊆ U with positive weights

wi, find a set cover with minimum total weight. A set cover is a selection

from the given sets Si whose union is still the whole of U .

The Set Cover problem is NP-complete, as it generalizes the Vertex

Cover problem. You should be able to give a polynomial-time reduction

from Vertex Cover.

A natural greedy rule is to successively add sets Si to the solution, that

cover as many new elements as possible per unit of weight. More formally:

Let R denote the set of yet uncovered elements, initially R := U . In every

step we put some Si with minimal wi/|Si∩R| in the solution, and we update

R by R := R \ Si. This is repeated until R = ∅.
It may be good to reflect why this greedy rule is proposed, rather than

simpler rules: Why don’t we choose the cheapest set each time? Why don’t

we choose the largest set each time? (What could go wrong?) Once you

see the reasons why the ratio of weight and “coverage” is a much better

criterion, you could also be wondering: Why don’t we choose some Si with

minimal wi/|Si| each time? That is, why is R also taken into account?

After these heuristic questions you may feel comfortable with the pro-

posed algorithm, and we can go on and analyze its approximation ratio.

In the following analysis we will need the so-called Harmonic sum. It

is defined as H(n) :=
∑n

i=1 1/i. Asymptotically it behaves roughly as lnn.

(But note that H(n) is quite different from lnn for small n.) The reason for

using H(n) is not obvious at this point; it is just more convenient to define

it already now, so we can focus on the actual analysis.

Let C be the greedy solution, and C∗ an optimal set cover, with total

weight w∗. The natural the algorithm is, deriving a good bound for its

1

approximation ratio is not so trivial. The concern is: How should we be

able to compare the costs of two (possibly) totally different set families?

The key idea of the analysis is that both solutions must cover the same

elements, namely all elements of U . Therefore we “charge” the elements

for being covered, and then we can compare their “payments” element-wise!

We only have to make sure that the prices correspond to the real costs. In

detail:

Whenever the elgorithm selects a set Si, every element s ∈ Si ∩ R pays

an amount cs := wi/|Si ∩ R|. In words: The cost wi for the step is shared

equally among all newly covered elements.

The weight of the greedy solution C obviously equals the sum of these

costs:
∑

s∈U cs =
∑

Si∈C wi. Now the somewhat tricky part of the analysis

begins.

Consider any set Sk = {s1, . . . , sd}, where the elements of Sk are sorted

in the order they are covered by the greedy algorithm. The index d is just

the size of this set. We do not know whether Sk will be chosen in a solution,

but regardless of that we may study how much is paid by the elements of

Sk. Only later we will use this information for comparing the solutions.

Next consider any element sj ∈ Sk. Just before sj gets covered by the

greedy solution, we have |Sk ∩R| ≥ d− j + 1, simply by the definition of R.

Hence wk/|Sk ∩ R| ≤ wk/(d − j + 1). (Remember that our prices look like

this, therefore this step.) Let Si be the set that covers this element sj in the

greedy solution. Since the algorithm always picks a set Si with minimum

weight-per-element ratio, this means

wi/|Si ∩R| ≤ wk/|Sk ∩R| ≤ wk/(d− j + 1).

Summation of all element costs in Sk now yields
∑

s∈Sk
cs ≤ H(|Sk|)wk.

Note carefully how the Harmonic sum comes in: recall what cs was, and pay

attention to the summation index.

So far we have studied any single set Sk of size d. Now we re-define d to

be the maximum size of all sets Si. Then the previous inequality is still true:

H(d)wk ≥
∑

s∈Sk
cs for each k. We also have

∑
Sk∈C∗

∑
s∈Sk

cs ≥
∑

s∈U cs,

simply because C∗ is a set cover. Finally we can put things together:

H(d)w∗ = H(d)
∑

Sk∈C∗
wk ≥

∑
Sk∈C∗

∑
s∈Sk

cs ≥
∑
s∈U

cs =
∑
Sk∈C

wk.

This shows that the algorithm has an approximation ratio H(d) ≈ ln d.

2

It might be disappointing that the approximation ratio is not constant

but grows with d. However, it grows only logarithmically, and it is constant

when the size d is fixed (a frequent case in applications). The ratio H(d)

is also the best possible one for any polynomial-time Set Cover algorithm.

The latter fact is very hard to prove. Such hardness-of-approximation results

are far beyond the reach of this course. We only mention this fact for your

information.

Do not be afraid of the many specific technical details of this analysis.

The take-home message is the basic idea that was used: to assign pieces

of the costs of both solutions to each other, in such a way that they can

be related to each other, one by one. Specifically, we have moved the costs

from the sets to the elements, because the elements are the same in both

solutions. For other problems we may have to assign the costs in other ways.

Weighted Vertex Cover – The Pricing Method

We are given a graph G = (V,E), where we index the nodes by integers,

that is, V = {1, . . . , n}, and node i has a weight wi. The problem is to

find a vertex cover of minimum weight. This problem is more general than

the unweighted Vertex Cover problem but is a special case of Weighted Set

Cover. (Think a moment: What are the elememts to be covered, and what

are the sets?)

Thus we can apply the previous H(d)-approximation, where the max-

imum node degree takes over the role of d. (Why?) But, luckily, we can

obtain a better approximation ratio. It will be the constant 2. This is not

only a nice result as such, but also the method we present is of more gen-

eral relevance in Optimization. Again we use prices, but now already in the

algorithm itself, not only in its analysis. The technique is called the pric-

ing method, or primal-dual method, because the given “primal” problem is

attacked by means of some “dual” problem (see below).

We let every edge e pay a price pe ≥ 0 for being covered by some node.

We will fix these prices later. The prices are called fair if
∑

e=(i,j) pe ≤ wi

holds for all nodes i. That is, the payments of all edges incident to node i

must not exceed the weight of i.

Terminology remark: Strictly speaking, the phrase “the prices are fair”

is not accurate. We only use it for brevity. Fairness is a property of the

whole function that assigns prices pe to all edges e ∈ E, not a property of

its single values pe.

3

For fair prices it follows
∑

i∈S
∑

e=(i,j) pe ≤ w(S) for every subset S of

nodes. In particular, if S is a vertex cover, then every edge appears at least

once in this sum, thus
∑

e∈E pe ≤
∑

i∈S
∑

e=(i,j) pe ≤ w(S). This inequality

says that the sum of any fair prices is a lower bound on the cost of any

vertex cover, thus even for the cost of an optimal vertex cover.

While the derivation of this inequality was only simple combinatorics, it

plays a fundamental role: Instead of tackling the problem directly, we may

first construct prices that are fair but as large as possible (this is going to

be our “dual” problem) and then construct in an ad-hoc way a cheap vertex

cover from these fair prices. In fact, this is easier to do than one might

expect:

We call a node i tight if
∑

e=(i,j) pe = wi. Initially let all pe = 0. Now we

take some e without tight endnodes and simply raise pe until one endnode

is tight. This step is repeated as long as possible. After that, let S be the

set of tight nodes.

This was the algorithm! We skip a time analysis, but it is easy to see

that the algorithm terminates (since every step produces a new tight node)

and the time is polynomial.

Clearly, S is a vertex cover, otherwise the algorithm could do more steps.

Moreover,
∑

e=(i,j) pe = wi holds for all i ∈ S, by definition of S. Summation

over all i ∈ S yields
∑

i∈S
∑

e=(i,j) pe = w(S). Every edge e appears at most

twice in this sum, hence w(S) ≤ 2
∑

e∈E pe. This shows that w(S) has at

most twice the weight of an optimal vertex cover.

In the unweighted case, when wi = 1 for all nodes i, the edges with

positive prices pe = 1 form a maximal matching in the graph, and the

vertex cover consists of all nodes contained in the edges of this matching.

That is, the pricing method yields the algorithm for this special case that

we have already seen.

4

