
Advanced Algorithms Course.

Lecture Notes. Part 3

An Approximation Scheme for Knapsack

So far we have seen approximation algorithms whose approximation ratios

on every instance were fixed (either constant or depending on the instance

size). But often we may be willing to spend more computation time to get

a solution closer to the optimum. In other words, we may trade time for

quality. This gives rise to the following definition:

A polynomial-time approximation scheme (PTAS) for a maxi-

mization problem is an algorithm that, given a problem instance and an

accuracy parameter ε, returns a solution whose objective value is at least

1− ε times the optimum, and runs within a time bound that is polynomial

for every fixed ε. PTAS for minimization problems are similarly defined,

except that the objective value must be at most 1 + ε times the optimum.

Note that the time may grow as ε decreases, and the user can freely

decide on some desired value of ε. This way, the choice of ε may be steered

by both the quality demands and the computational resources.

By far not every problem admits a PTAS. A nice positive example is

Knapsack.

In this problem, a knapsack of capacity W is given, as well as n items

with weights wi and values vi (i = 1, . . . , n). All these numbers are positve

integers. The problem is to find a subset S of items with
∑

i∈S wi ≤ W

(so that S fits in the knapsack) and maximum value
∑

i∈S vi. We define

y := max vi.

Knapsack is NP-complete but can be solved by some dynamic program-

ming algorithm. Its time bound O(nW ) is polynomial in the numerical value

W , but not in the input size n, therefore we call it pseudopolynomial. (A

truly polynomial algorithm for an NP-complete problem cannot exist, unless

P=NP.) However, for our approximation scheme we need another dynamic

1



programming algorithm that differs from the most natural one, because we

need a time bound in terms of values rather than weights. (This point will

become more apparent later on. Just acecpt the statement for the moment.)

Here it comes:

Define OPT (i, V ) to be the minimum (necessary) capacity of a knapsack

that contains a subset of the first i items, of total value at least V . We can

compute these values by

OPT (i, V ) = min(OPT (i− 1, V ), wi +OPT (i− 1,max(V − vi, 0))).

(We omit some straightforward details regarding initial values and negative

arguments.) Since i ≤ n and V ≤ n · y, the time is bounded by O(n2y).

As usual in dynamic programming, backtracing can reconstruct an actual

solution from the OPT values.

Now the rough idea of the approximation scheme is: If y is small, we can

afford computing an optimal solution, as the time bound is small. If y is

large, we round the values to multiples of some number and solve the given

instance only approximately. The point is that we can divide all the rounded

values by the common factor, thus reduce the time, without changing the

feasible solutions. In the following we work out this idea precisely. Instead

of specifying “small” and large”, another free parameter b > 1 will control

the time bound smoothly.

First compute new values v′i as follows: Divide vi by some fixed b and

round upwards to the next integer: v′i = dvi/be. Then run the dynamic

programming algorithm for the new values v′i rather than vi, and output

the solution S. The solution is feasible, because we have not changed the

weights and capacity, but only the values vi.

This was already the algarithm! Now we are going to analyze it.

Let us compare S to an optimal solution S∗. Since S is an optimal

solution for the changed values, we have
∑

i∈S v
′
i ≥

∑
i∈S∗ v′i. It follows:∑

i∈S∗ vi/b ≤
∑

i∈S∗ v′i ≤
∑

i∈S v
′
i ≤

∑
i∈S(vi/b + 1) ≤ n +

∑
i∈S vi/b. This

shows
∑

i∈S∗ vi ≤ nb+
∑

i∈S vi. In words: The optimal total value is larger

than the achieved value by at most an additional term nb.

Depending on the maximum value y we choose a suitable b > 1. We

choose b := εy/n, provided that εy > n. Then the above inequality becomes∑
i∈S∗ vi ≤ εy+

∑
i∈S vi. Since the best item alone is a feasible solution, we

also have
∑

i∈S∗ vi ≥ y. Together this implies∑
i∈S∗

vi ≤ ε
∑
i∈S∗

vi +
∑
i∈S

vi,

2



hence (1 − ε)
∑

i∈S∗ vi ≤
∑

i∈S vi. In words: We achieve at least a 1 − ε

fraction of the optimal value. The time is O(n2y/b) = O(n3/ε). Thus we

can compute a solution with at least 1 − ε times the optimum value in

O(n3/ε) time.

We had assumed εy > n. In the opposite case εy ≤ n we do not round

and approximate, but solve the problem instance exactly in O(n2y) time,

which is now bounded by O(n3/ε) as well.

For any fixed accuracy ε this time bound is polynomial in n (not only

pseudopolynomial as the exact dynamic programming algorithm). However,

the smaller ε we want, the more time we have to invest.

The presented approximation scheme is even an FPTAS, which is a

stronger type of approximation scheme: A fully polynomial-time ap-

proximation scheme (FPTAS) is an algorithm that takes an additional

input parameter ε and computes a solution that has at least 1 − ε times

the optimum value (for a maximization problem), or at most 1 + ε times

the optimum value (for a minimization problem), and runs in a time that is

polynomial in n and 1/ε.

Approximation Algorithms Using Linear Programming

Rounding can also be used together with a generic tool from Optimization,

in order to obtain nice approximation algorithms. We present the idea here

only briefly and succinctly.

A linear program (LP) is the following task: Given a matrix A and

vectors b, c, compute a vector x ≥ 0 with Ax ≥ b that minimizes the inner

product cTx. This is written as: min cTx s.t. x ≥ 0, Ax ≥ b.
The entries of all these matrices and vectors are real numbers. The ≥

symbol between vectors means the componentwise ≥ relation, and 0 denotes

the zero vector. Read “s.t.” as “such that” or “subject to”. Of course,

matrix and vectors must have suitable sizes, such that multiplications and

comparisons are well defined.

LPs can be solved efficiently (theoretically in polynomial time). However,

algorithms for solving LPs are not a subject of this course. LP solvers are

implemented in several software packages. Here we use them only as a “black

box”.

As an example we use again the Weighted Vertex Cover problem in a

graph G = (V,E). The problem can be reformulated as min
∑

i∈V wixi s.t.

xi+xj ≥ 1 for all edges (i, j). The variables xi are only capable of two values:

3



xi = 1 if node i is in the solution, and xi = 0 if not. Since the xi are not

arbitrary real numbers, this formulation is not an LP, but an integer linear

program (ILP). Hence we cannot use an LP solver directly. – Weighted

Vertex Cover is NP-complete after all, therefore no magic can solve it in

polynomial time, unless P = NP .

Instead we solve a so-called LP relaxation of the given problem and

then construct a solution of the actual problem “close to” the LP solution.

If this works well, we should get a good approximation.

In our case, a possible LP relaxation is to allow real numbers 0 ≤ xi ≤ 1

for the moment, and solve the resulting LP.

Let S∗ be a minimum weight vertex cover, and wLP the total weight of

an optimal solution to our LP relaxation. Since the relaxation offers more

feasible solutions to choose from, we have wLP ≤ w(S∗).

Next, let x∗i denote the value of variable xi in the optimal solution to

our LP relaxation. These numbers are in general fractional, so how do we

obtain a vertex cover from them?

To get rid of the fractional values we do the most obvious thing: we round

them! More precisely: Let S be set of nodes i with x∗i ≥ 1/2. Variables

corresponding to nodes in S are rounded to 1, all others are rounded to 0.

The set S is clearly a vertex cover. (But note that it is crucial to round 1/2

to 1, not to 0.) Moreover, wLP ≤ w(S∗) implies w(S) ≤ 2w(S∗), since by

rounding we have at most doubled the value of each variable from the LP

relaxation. We conclude that the approximation ratio is 2.

One might object that this section was superfluous, since we know al-

ready a simpler 2-approximation for Weighted Vertex Cover, without LP

solvers. But this was only an example used to introduce the general tech-

nique of LP relaxation followed by rounding. It is widely usable for other

problems, often with more sophisticated rounding rules.

4


