
Advanced Algorithms Course.
Lecture Notes. Part 4

Reductions and Approximability

The class of optimization problems where a solution within a constant factor
of optimum can be obtained in polynomial time is denoted APX (approx-
imable). There exist problems in APX that do not have a PTAS (unless
P=NP). They are called APX-hard problems. Such results are shown by
reductions, in analogy to NP-hardness results. But beware: A polynomial-
time reduction from one problem to another one does in general not im-
ply anything about their approximability. Reductions that establish APX-
hardness must also keep the solution sizes within constant factors. Here we
do not present the whole theory on a technical level, but we only illustrate
this type of reductions by an example.

A dominating set in a graph is a subset D of nodes such that every
node not being in D has at least one neighbor in D. The Dominating Set
problem asks to find a dominating set with a minimum number of nodes, in a
given graph with n nodes. A minimum dominating set can be approximated
within a factor O(log n) of the optimum size. This is easy to show by a
reduction to Set Cover. (Do you see how?) A natural question is: Can we
approximate dominating sets better?

The answer is negative, due to the following reduction from Set Cover to
Dominating Set. (Note that we need a reduction in the opposite direction
now!) Consider any instance of the Set Cover problem, on a set U of size
n, and with subsets Si ⊂ U with unit weights. Let I denote the set of all
indices i. We construct a graph G = (V,E) with node set V = I ∪ U as
follwos. (It is recommneded to draw a sketch or a small example.) We insert
all possible edges in I; in other words, we make I a clique. Furthermore we
insert all edges between i ∈ I and u ∈ U where u ∈ Si.

Now this bipartite graph “encodes” the Set Cover instance in a natural
way. We prove that, in fact, the size of a minimum set cover equals the size
of a minimum dominating set in G:

1



Every set cover of size k corresponds to a subset of I, which is also a
dominating set with k nodes (because I is a clique). This was the easy
direction.

Conversely, let D be any dominating set of size k in G. If D contains
some u ∈ U , we can replace u with some adjacent node i ∈ I. This yields a
set of size at most k which is still dominating (because I is a clique). This
way we get rid of all nodes in D ∩ U . Eventually we obtain a dominating
set which is entirely in I and no larger than k. Such a dominating set
corresponds to a set cover of size at most k.

This polynomial-time and size-preserving reduction implies the follow-
ing: If we could approximate Dominating Set within a factor better than
O(log n), then we could do so also for Set Cover. But the latter is be-
lieved to be impossible. Conditional on this conjecture, our Dominating Set
approximation is already the best possible one.

Summarizing Remarks about Approximation Algorithms

Most of the practically relevant optimization problems are NP-complete,
nevertheless solutions are needed. Approximation algorithms give guaran-
tees for both the time and the solution quality. They can be analyzed, e.g.,
by relating “simple” upper and lower bounds on the values of solutions, or
by relating items in the optimal and in the algorithmic solutions in some
clever way. Some approaches to the design of approximation algorithms are:
greedy rules, solving dual problems (pricing methods), and LP relaxation
followed by rounding. There are many more techniques, but we could only
glimpse into the field.

All NP-complete decision problems are “equally hard” subject to poly-
nomial factors in their time complexities, but they can behave very differ-
ently as optimization problems. Even different optimization criteria for the
same problem can lead to different complexities. Some problems are ap-
proximable within a constant factor, or within a factor that mildly grows
with some input parameters, and some can be solved with arbitrary accu-
racy in polynomial time. In the latter case we speak of polynomial-time
approximation schemes.

One should also notice that the proved approximation ratios are only
worst-case results. The quality of solutions to specific instances is often
much better. On the other hand, there exist problems for which we cannot
even find any reasonable approximation in polynomial time. One example
is finding maximum cliques in graphs. However, such “hardness of approxi-
mation” results require much deeper proof methods than NP-completeness
results.

2



Network Flow with Applications

“Everything flows.” (Heraclitus)

Maximum Flow and Minimum Cut

Let G = (V,E) be a directed graph where every edge e has an integer
capacity ce > 0. Two special nodes s, t ∈ V are called source and sink,
all other nodes are called internal. An s − t flow, or simply a flow, is a
function f on the edges such that: 0 ≤ f(e) ≤ ce holds for all edges e
(capacity constraints), and f+(v) = f−(v) holds for all internal nodes v
(conservation constraints), where we define f−(v) :=

∑
e=(u,v)∈E f(e) and

f+(v) :=
∑

e=(v,u)∈E f(e). (As a mnemonic aid: f−(v) is consumed by node

v, and f+(v) is generated by node v.) The value of the flow f is defined as
val(f) := f+(s) − f−(s). The Maximum Flow problem asks to compute
a flow with maximum value.

Do not mess up all these concepts, always distinguish them carefully and
denote them properly when you write about them. (A “flow” is a function
on all edges, the flow “value” is a single number associated with the flow,
etc.) Confusion of notation is not only a formal error, it easily leads to faulty
reasoning as well.

One obvious motivation of the problem is shipping of goods from a source
(supplier) to a sink (customer). A flow describes a steady stream of goods
along the edges (that can be one-way streets) of limited throughput. The
conservation constraints say that nothing is added or removed on the way
from the source to the sink.

The problem can be written as an LP, but there is also a more efficient
special-purpose algorithm for Maximum Flow that we outline now.

For any flow f in G (not necessarily maximum), we define the residual
graph Gf as follows. Gf has the same nodes as G. For every edge e of
G with f(e) < ce, Gf has the same edge with capacity ce − f(e), called a
forward edge. The difference is clearly the remaining capacity available
on e. For every edge e of G with f(e) > 0, Gf has the opposite edge with
capacity f(e), called a backward edge. The reason for creating backward
edges may be less obvious: By virtue of backward edges we can “undo” any
amount of flow up to f(e) on e, by sending it in the opposite direction. As
indicated above, the residual capacity is defined as ce − f(e) on forward
edges and f(e) on backward edges

Next, let P be any directed s − t path (shorthand for “directed path
from s to t”) using only directed edges in Gf . Let b be the smallest residual

3



capacity of all edges in P (the bottleneck residual capacity). On every
forward edge e in P we may increase f(e) in G by b. Formally: f ′(e) =
f(e) + b. On every backward edge e in P we may decrease f(e) in G by b.
Formally: f ′(e) = f(e) − b. It is easy to check that the resulting function
f ′ on the edges is still a flow in G. That is, the capacity and conservation
constraints are still sarisfied. Accordingly, we call P an augmenting path
and f ′ is the augmented flow obtained by these changes. Note that val(f ′) =
val(f) + b > val(f).

We are ready to state the generic Ford-Fulkerson algorithm: Initially
let f(e) := 0 on all edges e. As long as some directed s− t path in Gf exists,
augment the flow f as described above, and update Gf .

In order to prove that Ford-Fulkerson outputs a maximum flow we must
show exactly this: If no s−t path in Gf exists, then f is, in fact, a maximum
flow. (Hence the algorithm can terminate only with an optimal flow.

The proof is done via another concept of independent interest: An s− t
cut in G = (V,E) is a partitioning of V into sets A,B with s ∈ A and t ∈ B.
When s and t are clear from context, we simply say “cut”. The capacity of
a cut is defined as c(A,B) :=

∑
e=(u,v):u∈A,v∈B ce. We stress that any such

partitioning with source and sink at different sides is called a cut; no special
properties are assumed.

For any subset S ⊂ V we define f+(S) :=
∑

e=(u,v):u∈S,v /∈S f(e) and

f−(S) :=
∑

e=(u,v):u/∈S,v∈S f(e). Remember that val(f) = f+(s)− f−(s) by
definition. We can generalize this equation to arbitrary cuts and obtain:
val(f) =

∑
u∈A(f+(u) − f−(u)). This follows easily from the conservation

constraints, but we omit the tedious calculation details.
Next, when we rewrite the last expression for val(f) as a sum of flows on

edges, then, for edges e with both nodes in A, the terms +f(e) and −f(e)
cancel out in the sum. (Again we omit some intermediate steps.) It remains
val(f) = f+(A)− f−(A). This finally implies:

val(f) ≤ f+(A) =
∑

e=(u,v):u∈A,v/∈A
f(e) ≤

∑
e=(u,v):u∈A,v/∈A

ce = c(A,B).

In words: The flow value val(f) is bounded by the capacity of any cut. This
conclusion is also plausible and should not be a surprise.

Next we show that, for the flow f returned by Ford-Fulkerson, there
exists a cut with val(f) = c(A,B). That is, the above inequality becomes
an equation. This implies that the algorithm, in fact, computes a maximum
flow!

Clearly, when the Ford-Fulkerson algorithm stops, no directed s− t path
exists in Gf . Consider the following cut. Let A be the set of nodes v such

4



that some directed s− v path exists in Gf , and B = V \A. Since s ∈ A and
t ∈ B, this is actually a cut. Furthermore, this cut has the desired property:

For every directed edge (u, v) with u ∈ A, v ∈ B, we have f(e) = ce (or
v would be in A). For every directed edge (u, v) with u ∈ B, v ∈ A, we have
f(e) = 0 (or u would be in A because of the backward edge (v, u) that exists
in Gf ). Altogether we obtain val(f) = f+(A)− f−(A) = f+(A) = c(A,B).
So the maximum flow value val(f) equals the capacity of a minimum cut.
The last statement is the famous Max-Flow Min-Cut Theorem.

Another important observation is that the Ford-Fulkerson algorithm re-
turns a flow where all values f(e) on the edges are integers. This follows
immediately from the augmentation rules. We started from integers, and all
changes and residual capacities are always integers.

Time Complexity of Computing Flows and Cuts

Let n and m denote the number of nodes and edges, respectively, in the
given graph.

The Ford-Fulkerson algorithm may need O(mC) time, where C is any
trivial upper bound on the flow value, e.g., the sum of capacities of the
edges at the source. The factor m comes from the time needed to find
an augmenting path, e.g., by DFS or BFS, and the factor C is there since
at most C augmentation steps are needed. (Every augmentation increases
val(f) by at least 1.) This time bound is not polynomial in the input length,
because C may be exponential.

Note that the “generic” Ford-Fulkerson algorithm does not specify which
augmenting path to take. By a careful choice of augmenting paths one can
make the Ford-Fulkerson algorithm polynomial. Dinitz’ algorithm is the
Ford-Fulkerson algorithm that always takes the shortest augmenting path,
i.e., one with the smallest number of edges. It runs in O(n2m) time. Another
strategy considers only edges with the largest residual capacities, such that
val(f) increases a lot in every augmentation step It achieves O(m2 logC)
time. In both cases the time analysis is somewhat long and technical, there-
fore we onit it and only mention the results. There exist even faster Max-
imum Flow algorithms based on different principles (called Preflow-Push
algorithms).

Once we have a maximum flow f , we can also compute a minimum cut
(A,B), by using O(m) additional time. The proof of the Max-Flow Min-
Cut Theorem yields an algorithm for this: A is the set of all nodes reachable
from s via directed edges in the residual graph Gf , and B is the rest.

5



Appendix

It may be helpful to illustrate the issues with flows and cuts on a minimal-
istic example. Consider the network with the following directed edges and
capacities.

(s, u) 2
(s, v) 1
(u, v) 3
(u, t) 1
(v, t) 2
We may send 1 flow unit along each of the paths (s, u, t) and (s, v, t),

which yields a flow with value 2. Now the edges (s, v) and (u, t) are already
exhausted, thus we cannot further improve this solution by greedy steps.
The heavy edge (u, v) is not even used.

Alternatively, we may send 2 flow units along the path (s, u, v, t), which
is another solution with flow value 2 that cannot be further improved by
greedy steps: The edges (s, v) and (v, t) have free capacities, but they are
connected “in the wrong direction”, by (v, u).

Here the key idea of Ford-Fulkerson applies. The reversed edge (v, u)
exists in the residual graph, even with capacity 2. Hence we can send 1 flow
unit on (v, u), which means to reduce the flow on (u, v) to 2 − 1 = 1. This
yields the following flow of value 3.

(s, u) 2
(s, v) 1
(u, v) 1
(u, t) 1
(v, t) 2
This flow is also optimal, since the only edge with free capacity is (u, v),

the other edges are replaced with the reversed edges, and they cannot be
connected to some directed s− t path. The cut provided by the proof of the
max-flow-min-cut theorem is A = {s} and B = {u, v, t} and has capacity 3.

6


