Advanced Algorithms Course.
Lecture Notes. Part 5

Bipartite Matching

Here is one of the simplest but also most important examples of a reduction
of another graph problem to Maximum Flow.

A bipartite graph is a graph G = (X, Y, F) whose node set XUY" is split
in two sets X, Y, and where edges exist only between X and Y. A matching
in a graph is a set of pairwise node-disjoint edges. The Bipartite Matching
problem asks to find a matching of maximum size in a given bipartite graph.
Typical applications include job assignment problems: Nodes in X are jobs
to be done, nodes in Y are workers or machines, and an edge indicates that
the worker/machine is able to do the job. A matching is then a set of jobs
that can be executed in parallel.

Bipartite Matching is reduced to Maximum Flow as follows: Add a
source s and a sink ¢ to the graph, insert edges from s to all nodes in
X, and from all nodes in Y to t, orient the edges of E from X to Y, and set
all edge capacities 1.

We claim that the size of a maximum matching equals the value of a
maximum flow. This equation looks simple, but it has some issues and
needs a proof, as dicussed below.

Let k& be the value of a maximum flow. As we know, there exists a
maximum flow such that the flow values on all edges are integer. Since all
capacities are 1, the only possible flow values on the edges are 0 and 1. Now,
due to the conservation constraints, the edges in F carrying flow 1 build a
matching M. Morover, their number equals k.

Note carefully that this is not yet sufficient to conclude that M is a
matching with maximum size! (Actually, this point often causes confusion.)
Right, we started from a maximum flow. However, we are not obliged to
use flows at all, in order to solve the Bipartite Matching problem. This is
just one approach, and maybe some other approach yields an even larger
matching. In order to exclude this hypothetical possibility, we must also
prove the (simpler) opposite direction:

Let k be the size of a maxumum matching M. Then we can obviously
construct a flow of value k: Let the flow value be 1 on all edges of M and
on all edges connecting M with s and ¢. — Ironically, it is easy to miss this
reverse direction in the equivalence proof because it is so simple!

Due to this reduction, the time to solve the Bipartite Matching problem
is O(mC) = O(mn); remember what C' was. One can also find maximum
matchings in general graphs in polynomial time, but this is much more
tricky, and we will not address that problem.

Disjoint Paths versus Disconnecting Edge Sets

This section deals with two problems motivated by, e.g., network reliability.

In a directed graph with a source s and a sink ¢ we want to find a
maximum number of mutually edge-disjoint directed paths from s to ¢t. That
is, these paths are allowed to share nodes, but not edges.

We can solve this problem as follows. Give all edges the capacity 1. If k
disjoint s — ¢ paths exist then, obviously, they build together is a flow with
val(f) = k. The converse is also true: Once we have computed a flow with
val(f) = k and integer flow values on the edges (which can be only 0 or 1),
we can successively extract k different s — ¢ paths consisting of “l-edges”,
thanks to the conservation constraints. Note that the extraction is necessary
to solve the problem — a flow is not yet a family of paths!

The extraction in more detail: Starting in s we simply follow any path of
edges that carry flow 1, until we reach ¢, and we delete every traversed edge
immediately from the graph. Again, due to the conservation constraints,
we can never get stuck, and it remains a flow of value k£ — 1. Thus we can
repeat this procedure inductively. We stress again: Although the extraction
phase is simple, the mentioned arguments are needed to show that it really
works.

The time is again O(mC') = O(mn), including the time for the extraction
phase.

Next we consider a dual problem: Given a directed graph with source
s and sink ¢, we want to remove a set F' of edges, with minimum size |F,
such that s and ¢ are disconnected, that means, all directed s — ¢ paths are
interrupted.

Not surprisingly, the smallest possible size of F' equals the maximum
number k of edge-disjoint s —t¢ path. This statement is known as Menger’s
Theorem.

For the proof, consider any edge set F' whose removal disconnects s and
t. Since F' must contain some edge from every s — t path, we have |F| > k.

For the reverse inequality we can use the Max-Flow Min-Cut Theorem: We
take our graph and assign to every edge the capacity 1. As seen above, there
exists a maximum flow f such that k = val(f). Hence there exists a cut
(A, B) with capacity k. Now let Fy be the set of directed edges from A to
B. Clearly, |Fy| = k, and the removal of Fy disconnects s and ¢. Hence,
there exists some solution F' (namely Fp) with |F| < k.

Besides the mere equation, this also shows that we can construct F', using
the previous algorithms for flows and cuts.

In undirected graphs we can state the same problems and solve them in
the same way. We only need a preprocessing step where we replace every
undirected edge with two opposite directed edges. It is easy to show that
any maximum flow uses at most one of the opposite edges, and correctness
follows.

Interestingly, the problem to connect k different source-sink pairs by
edge-disjoint paths is NP-complete, but it becomes polynomial-time solvable
if all sources and all sinks, respectively, are identical, as we have just shown.

Circulations with Demands and Lower Capacity Bounds

In a colloquial sense, the word circulation refers to any steady-state move-
ment of things through a system. Circulations are ubiquitous in nature and
society. In the language of graphs, a circulation can be viewed as a flow with-
out source and sink, that is, a flow where all nodes satisfy the conservation
constraints.

Now we introduce a notion of circulations that subsumes both flows and
circulations (in the colloquial sense). This will also equip us with useful
variants of flow problems which can make it easier to reduce other problems
to (at last) Maximum Flow, as they can serve as intermediate problems in
reductions.

Let G = (V, E) be a directed graph where every edge e € F has a lower
and upper capacity l. and ce, respectively, where 0 < [, < ¢, and every
node v has a demand d(v). We define a circulation to be a function f
on the edges such that: [< f(e) < ¢, for all edges e (capacity constraints)
and f~(v) — fT(v) = d(v) for all nodes v (demand constraints).

Note that a demand can be any real number. If d(v) < 0, we also speak
of a supply. Sometimes we denote the set of all nodes v with d(v) < 0 by
S, and the set of all nodes v with d(v) > 0 by 7. Now we call all nodes in
S sources, and all nodes in T sinks. Previously we had only considered the
special case with exactly one source and one sink, and with [, = 0 for all
edges e.

The Circulation problem is: Given a graph (as specified above), construct
some circulation, or report that no circulation exists. Note that, in this
formulation, the problem is only concerned with the existence of a feasible
solution, but nothing has to be maximized or minimized. We only want the
sources (sinks) to deliver (consume) exactly prescribed amounts. As a first
application, think of suppliers and customers of some good, connected by
a network of transportation channels. We will see later why positive lower
capacities on certain edges can make sense.

Let us first consider the case when still [, = 0 for all edges e. From the
definitions it follows easily that >, d(v) = 0 is a necessary condition for
the existence of a circulation. We define d := Y cpd(v) = — > ,cqd(u).
If S =T = (equivalently: d(v) = 0 for all v), then the everywhere-zero
function f is trivially a circulation. Thus it suffices to study the case when
both S # () and T # 0.

In order to re-establish the situation with exactly one source and sink,
we do the following reduction that we denote CF-red: We insert new nodes s
and ¢, and directed edges (s,u) and (v,t) for all uw € S and all v € T. These
edges get capacities —d(u) and +d(v), respectively. The idea is simply to
let the new source s supply an amount d and let the new sink ¢ demand an
amount d, whereas the old sources and sinks in S and T become usual nodes
with demand 0.

We claim that a circulation exists if and only if the graph obtained by
CF-red has a flow with value d, and in the affirmative case, this flow is
also maximum, because it saturates all edges at the new source and sink.
(An edge is called saturated if the flow on the edge equals the capacity.)
The proof of this equivalance is straightforward, but it is recommended that
you think about it. — Thus, CF-red reduces the Circulation problem to
Maximum Flow, in the case when [, = 0 holds for all edges e.

Next we come to the general case where the lower capacities [, can be any
non-negative numbers. We give a reduction named LZ-red that reduces this
general Circulation problem to the case when all lower capacities are zero:
Take any edge e = (u,v) with I > 0. Since at least an amount of [, must
flow on the edge e, we can assign this amount immediately. Thus we set the
lower capacity of e to 0, and the upper capacity of e to ¢, — l.. Clearly, we
must also adjust the demands: Since we have increased the outgoing flow
from u by e, its demand becomes d(u) + ., and since we have increased
the incoming flow into v by l., its demand becomes d(v) — l.. These simple
operations are done for all edges, in any ordering. Of course, alternatively
we may process all edges simultaneously and describe the changed demand
of every node v more compactly as d(v) + > c—(yu) le = De=(uv) le-

That is, in order to solve the general Circulation problem, we may first
apply LZ-red to get a graph with [= 0 for all edges e, then apply CF-red,
and finally solve Maximum Flow in the resulting graph. The reductions cost
only O(m) time in a graph with m edges.

Equipped with these tools we will now go through several applications
where one might not even expect flows and cuts at first glance. For each
problem we will only give the idea and sketch the network construction, but
we omit formal equivalence proofs. We also stress that only one possible
reduction is given for each problem — this does not exclude the possibility
of doing many details differently.

Planning for Data Mining: Survey Design

A company sells several products, and customers shall be asked about their
satisfaction. Each customer i gets questions about some products (s)he has
purchased. The number of questions to customer 7 shall be between ¢; and ¢}.
Moreover, between p; and p;- customers shall be asked about each product
j. (The survey must generate enough data to ensure statistical significance,
but it should not be too large, tiresome, and costly.) All the mentioned
numbers are given. The problem is: Does there exist a survey with the
given constraints, and if so, how can we construct one?

We represent customers and products by nodes of a bipartite graph. A
directed edge (i,7) is inserted if customer i has purchased product j. We
add nodes s and t, edges from s to all customers, and from all products to
t. We also insert an edge from t back to s, with lower capacity 0 and a huge
upper capacity. All demands are set to 0. The lower and upper capacity
bounds are fixed as follows: ¢;, ¢, for every edge from s to the respective
customer node, 0,1 for customer-product edges, and pj,p; for every edge
from the respective product node to t.

We claim that the feasible surveys correspond to circulations in this
graph (with integer values on the edges), where the survey questions are the
edges (i,7) with flow value 1.

The idea here is that the flow units model “question tickets”. Every
customer and every product must get a number of tickets in the desired
range, customer ¢ is asked about product j if some question ticket moves
from ¢ to j, and all tickets are eventually collected in ¢ and returned to s.

Note that we have turned the required minimum numbers of questions
immediately into lower capacities. A “direct” reduction to Maximum Flow
without this nice tool would be technical and cumbersome, and perhaps
hard to follow.

Appendix

An interesting example that can counteract some frequent misconceptions
about Bipartite Matching is the following bipartite graph with 3 4+ 3 nodes:
It has the node set X UY where X = {xg, 21,22} and Y = {yo,y1,v2},
and one fixed node on each side is adjacent to all nodes on the other side.
In other words, the edges are: (xo,y1), (0,%2), (Zo,%0), (Z1,%0), (T2,%0).

One might naively think that every connected bipartite graph has a
matching of size min{|X]|,|Y|}. But this graph is a counterexample. Its
maximum matching has only 2 edges.

Hence the network constructed from the graph, in the standard reduction
from Maximum Matching to Maximum Flow, should possess some cut (A, B)
of capacity only 2. Maybe this cut is not so obvious, but we can get it from
the algorithms. Here is the result: A = {s,z1,22,y0} and B = {xo,y1,y2,t},
In fact, the only cut edges are (s, xo) and (yo,t), whereas (zg, y9) goes from
B to A and does not contribute to the cut capacity.

