
Advanced Algorithms Course.

Lecture Notes. Part 6

A Simplified Airline Scheduling Problem

An airline has to operate m flights, each of which is characterized by origin

and destination airport, departure and arrival time. For any two flights i

and j we define, by ad-hoc criteria, whether flight j is reachable from flight i

(for example: same airport, enough time between arrival of i and departure

of j). This reachability relation defines a directed acyclic graph (DAG) on

the set of flights. If j is reachable from i, then both flights may be performed

by the same plane. The problem is: Given a directed graph describing the

reachability relation, and a positive integer k, can all flights be operated

using a fleet of at most k planes?

We will reduuce this problem to the Circulation problem. It is tempting

to represent the airports by nodes and the flights by edges, which seems

natural. However, the construction presented below is different. Note that a

graph is an abstract structure. Nodes and edges do not have to correspond

to any physical objects that resemble points and lines. We will not even

explicitly represent airports, instead, we will use directed edges to model

both the flights and their reachability relationships.

Now a possible construction follows. The pairs of numbers appearing

below are lower and upper bounds on capacities (le, ce).

We represent all flights by mutually disjoint directed edges with capac-

ities (1, 1). The lower capacity is 1, since every flight must be performed.

Whenever a flight g is reachable from another flight f , we insert a directed

edge from the end of f to to the start of g, with capacity (0, 1). Here the

lower capacity is 0, since we may or may not use this connection. Further-

more, we insert a source s and a sink t. We connect s to the start of every

flight, by an edge of capacity (0, 1). Similarly, we connect the end of every

flight to t, by an edge of capacity (0, 1). Finally we connect s to t by an edge

1



of capacity (0, k). Nodes s and t have demands −k and +k, respectively,

and all other nodes have demand 0.

In this network, the possible schedules (assignments of planes to flights)

correspond to the possible circulations. Every flow unit models one plane,

and the flow on the extra edge from s directly to t is the number of unused

planes.

The equivalence proof requires a bit of care and essentially uses the fact

that the reachability graph is a DAG. However, we omit the details. And

once again we stress the usefulness of the lower capacity bounds.

A Machine Learning Problem: Image Segmentation

In this problem, our aim is to label every pixel of a digital image as fore-

ground (part of an object) or background. The image is represented as an

undirected graph G = (V,E) where nodes are pixels, and edges exist between

any two neighbored pixels (according to some definition of neighborhood).

For example, the graph can simply be a grid where every pixel has an edge

to its four neighbors in the four cardinal directions.

For every pixel i we are also given two numbers ai and bi expressing the

strength of belief that pixel i is foreground or background, respectively. We

do not discuss here in depth how these values are obtained. Criteria could

be, for example, the colors and positions of pixels.

A further assumption is that the picture does not comprise too many

switches between foreground and background, that is, it shows a few large

and connected objects with rather smooth shapes. Therefore we introduce

penalties for label switches: For each pair of neighbored pixels i, j we charge

a penalty pij if i and j have different labels.

Altogether this gives rise to the following optimization problem: Split V

into sets A and B (foreground and background) so as to maximize

q(A,B) :=
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i,j)∈E,i∈A,j∈B
pij .

That is, the segmentation should respect the classification criteria for the

single pixels, but at the same time it should not need too many switches.

We emphasize that the model assumptions and the purely mathematical

optimization problem derived from them are two separate aspects, and we

will consider the latter aspect only.

2



We can reduce this problem to Minimum Cut as follows. First observe

that the problem is equivalent to minimizing

q′(A,B) :=
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i,j)∈E,i∈A,j∈B
pij .

That is, we want to minimize the penalties for false labels and for switches.

As we need a directed graph, we replace every edge (i, j) with two opposite

directed edges having the same capacity pij . We insert a source s and a sink

t, and for every pixel k we insert a directed edges from s to k with capacity

ak, and from k to t with capacity bk. Now any s− t cut (A,B) has capacity

q′(A,B). (For seeing this, a drawing of a network with a few pixels may

be helpful.) Thus, an optimal segmentation corresponds to a minimum cut,

and by computing a minimum cut we can solve our problem.

Project Selection

Let P be a set of possible projects to choose from. Project i has revenue pi.

A value pi can also be negative, in which case the project is an investment

for other projects: Some projects depend on others, and these dependencies

are given as a directed graph G = (P,E) where an edge (i, j) means: if i

shall be done, then j must be done, too (before i can even start). Clearly,

G must be a DAG, since projects in a directed cycle of dependencies can

never be done. We call a set of projects A ⊂ P feasible if A respects

these precedence constraints. The problem is to select a feasible set A that

maximizes
∑

i∈A pi. This is also known as the Open-Pit Mining problem;

one can easily imagine the reason.

A remark on the notation: Edges are directed here from i to j, if j must

be done before i. That is, the “arrow” is opposite to the chronological order.

This is not a mistake, but only a convention; you may reverse all edges if

you like. Or read the arrows as “if i then j” (i =⇒ j).

We reduce Project Selection (Open-Pit Mining) to Minimum Cut as

follows. We insert a source s and a sink t. The directed edges are (s, i)

with capacity pi, if pi > 0, and (i, t) with capacity −pi, if pi < 0. The

nice trick is to give the directed edges in G (which indicate the precedence

constraints) a huge capacity. This has the effect that none of these directed

edges can go from A to B in a minimum cut (A∪ {s}, B ∪ {t}). Hence A is

automatically a feasible solution whenever (A ∪ {s}, B ∪ {t}) is a minimum

cut. Now we can solve the Minimum Cut problem in this network, without

worrying about the feasibilty of A.

3



It remains to show that minimizing the cut capacity is in fact equivalent

to maximizing the revenue. This is proved in a few lines:

c(A ∪ {s}, B ∪ {t}) =
∑

pi>0,i∈B
pi −

∑
pi<0,i∈A

pi

holds by the definition of capacity. We artificially add zero:

c(A ∪ {s}, B ∪ {t}) =
∑

pi>0,i∈B
pi −

∑
pi<0,i∈A

pi −
∑

pi>0,i∈A
pi +

∑
pi>0,i∈A

pi.

Now we can group the terms in a different way:

c(A ∪ {s}, B ∪ {t}) =
∑
pi>0

pi −
∑
i∈A

pi.

Note that the first term is constant and the second term is the revenue.

4


