
Advanced Algorithms Course.

Lecture Notes. Part 8

3-SAT: How to Satisfy Many Conditions

The Satisfiability problem (SAT) asks to assign truth values to the variables
in a Boolean formula so as to make the formula true. Specifically, the formula
is given as a conjunction of clauses, where each clause is a disjunction of
literals, i.e., unnegated or negated Boolean variables. SAT appears directly
in many real problem settings where logical variables have to satisfy certain
constraints. In 3-SAT, every clause has 3 literals. 3-SAT is a classical
NP-complete problem. MAX 3-SAT is the following natural relaxation of
3-SAT: Find an assignment of truth values that satisfies as many clauses as
possible. By an obvious reduction from 3-SAT we find that MAX 3-SAT is
also NP-complete.

On the positive side, if any conjunction of k clauses with exactly 3 literals
is given, we can easily find an assignment that satisfies most of the clauses,
namely an expected number of 0.875k clauses. An extremely simple ran-
domized algorithm will do: Assign truth values 0 or 1, each with probability
1/2, to all variables independently. The analysis is very simple, too: Every
clause is satisfied with probability 7/8, hence, by linearity of expectation,
an expected number of 7k/8 clauses is satisfied.

We can conclude even more from this result: Since an expected number of
7k/8 clauses is satisfied, there must always exist some truth value assignment
that actually satisfies at least 7k/8 clauses. This easily follows from a general
argument: Consider any random variable X. Since E[X] is the weighted
average of X, variable X can actually take on some value greater than or
equal to E[X], with some positive probability. Now we just apply this
observation to the variable X indicating the number of satisfied clauses in
the result of our algorithm.

This reasoning is the famous Probabilistic Method that can be char-
acterized as follows: When we look for a certain combinatorial structure

1



(here: a truth assignment satisfying many clauses), we may apply some
simple randomized algorithm and show that the desired structure is pro-
duced with some positive probability. Hence this structure must exist. Of
course, this approach has some shortcomings: It does not work for any such
problem (due to lack of a simple randomized algorithm), and it proves only
the mere existence of the object we are looking for, but it does not say how
we can find it efficiently. These questions must be further studied for any
specific problem at hand.

In the case of MAX 3-SAT, how difficult is it to actually find an as-
signment that satisfies at least 7k/8 clauses? The obvious idea is to iterate
the above algorithm until success. Below we analyze the expected number
of iterations needed. It would be a big mistake to believe that 2 expected
iterations suffice, since we either succeed or fail. Of course, we must look
into the probability distribution instead.

Let pj be the probability of satisfying exactly j of the k clauses. Since
the expected value of j is 7k/8, we know the following equation, where the
sum is already split in two cases:

7k/8 =
∑
j

jpj =
∑

j<7k/8

jpj +
∑

j≥7k/8
jpj .

We abbreviate the success probability by p :=
∑

j≥7k/8 pj . Let k′ denote the
largest integer with k′ < 7k/8. (It will become apparent soon why this is a
clever definition.) We upperbound the sum generously and obtain

7k/8 ≤
∑

j<7k/8

k′pj +
∑

j≥7k/8
kpj = k′(1 − p) + kp ≤ k′ + kp.

It follows kp ≥ 7k/8 − k′, which is at least 1/8 due to the definition of k′.
Thus, a random assignment succeeds with probability p ≥ 1/(8k), hence the
expected number of iterations until success is at most 8k. Note that this is
a Las Vegas algorithm.

The algorithm does not solve the actual MAX 3-SAT problem, as it
guarantees only 0.875k satisfied clauses in every input. But what if, for
example, 0.95k clauses are satisfiable ...? It has been shown that, for ar-
bitrarily small ε > 0, it is already NP-complete to decide whether a MAX
3-SAT instance allows to satisfy (0.875 + ε)k clauses. In this sense, running
the simple randomized algorithm above is, amazingly, already the best one
can do.

From now on we jump between randomized algorithms and another sub-
ject. This is not a course design mistake, rather, it has scheduling reasons.

2



Algorithms for Problems on Special Instances

Small Vertex Covers – XP and FPT

The Vertex Cover problem in graphs is NP-complete, but if the graph is al-
ready known (or expected) to have some vertex cover with a “small” number
k of nodes, compared to the number n of nodes, we can still solve it exactly
and efficiently.

A naive way to find a small vertex cover is to test all subsets of k nodes
exhaustively. Elementary combinatorics tells us that this costs O(knk+1/k!)
time: Note that O(kn) time is sufficient to test whether a given set of k
nodes is a vertex cover, and the other factor comes from

(n
k

)
. This time

bound is feasible only for very small k. Unfortunately, k appears in the
exponent of n. It would be much better to have a time bound of the form
O(bkp(n)), where b is a constant base, and p some fixed polynomial. (To
get a feeling of the tremendous difference, try some concrete figures and
compare the naive time bound for Vertex Cover with the bounds we will
obtain below.)

A problem with input length n and another input parameter k is said
to be in the complexity class XP if it can be solved in O(nf(k)) time,
where f is some computable function. A problem with input length n and
another input parameter k is called fixed-parameter tractable (FPT) if
it can be solved in O(f(k) ·p(n)) time, where f is some computable function
(usually exponential) and p is some polynomial. Note that FPT⊂XP.

Recall that the O-notation suppresss constant factors. In the analysis of
FPT algorithms we may want to focus on the heavy non-polynomial terms
in the time complexity. Thus we also introduce the more generous O∗-
notation that even suppresses factors that are polynomial in n. That is, we
may write O∗(f(k)) instead of O(f(k) · p(n)). Since k < n, the O∗-notation
also suppresses factors that are polynomial in k. Since in practice it would
be weird to ignore polynomial factors, this should be seen only as a “lazy”
notation for a rough analysis.

In the following we show that Vertex Cover is not only an XP problem
but also an FPT problem. Let G be the input graph. Our basic algorithm
is simply the following:

Take any uncovered edge (i, j) in G. Create two copies of G. In one copy,
put node i in the solution. In the other copy, put node j in the solution.
Repeat this step recursively in both graphs. In every copy of G, stop the
process as soon as k nodes have been chosen or all edges are covered.

3



Upon every decision (for choosing i or j) we create copies of the problem
instance that we call branches. We can think of the whole process as a
recursion tree that we call a bounded search tree. How large is this tree,
for the proposed algorithm?

Since at most k nodes of G are allowed in a solution, the search tree
has depth at most k, and since the tree is binary, it has at most 2k leaves,
hence O(2k) nodes. If a vertex cover is found in a copy of G in some of the
leaves of the search tree, then we have a solution, otherwise we know that
no solution of size k can exist at all.

To bound the time complexity, it remains to study how much time we
need in every node of the search tree. The main work is copying. We observe
again that G can have at most kn edges, since otherwise no vertex cover of
size k can exist. Hence copying costs O(kn) time, and the overall time is
O(2kkn) = O∗(2k).

Although this is much better than naive exhaustive search, further im-
provements would be desirable. The primary concern is the exponential
factor 2k. Can we improve the base 2 and thus make the algorithm practical
for larger k?

The weakness of the algorithm above is that it considers single edges and
selects only one node at a time. If we could select more nodes at once, we
could generate our potential solutions faster.

Indeed, a faster FPT algorithm is based on the following fact: For any
node i, we have to take i or all its neighbors, in order to cover all edges
incident to i. Accordingly, we modify the branching rule in our algorithm:
In one copy, put node i in the solution. In the other copy, put all neighbors
of i in the solution. The rest of the algorithm is unchanged.

Clearly, it is advantageous to apply this branching rule to nodes i of high
degrees. But what if the graph has no high-degree nodes?

If all degrees are at most 2, then G consists of simple paths and cy-
cles, and the Vertex Cover problem is trivial there. In general we can stop
branching in a copy of G as soon as the graph after removal of the covered
edges has maximum degree 2; the remaining instance is then solvable in
linear time. Thus, in every branching step we take 1 node and at least 3
nodes, respectively, in the two branches. How large is now our search tree?

This can be analyzed by recurrence equations, similarly as for divide-
and-conquer algorithms. Let T (k) be an upper bound on the number of
leaves of a search tree for vertex covers of size k. Due to our branching rule
it fulfills T (k) = T (k − 1) + T (k − 3). (Why?) Any recurrence of this form
is called a linear recurrence, and it has a solutions of the form T (k) = xk

4



with some constant base x. Our recurrence becomes xk = xk−1 + xk−3,
which simplifies to x3 = x2 + 1. This equation is called the characteristic
equation of the recurrence. Numerical evaluation shows x ≈ 1.47, which is
much better than 2.

Researchers have invented more tricky branching rules for Vertex Cover
and further accelerated the branching process. The best known base is below
1.3. Anyway, we have shown here the time bound O(1.47kkn) = O∗(1.47k).

Kernelization

For the problem of finding a vertex cover of size at most k we have shown the
time bound O(1.47kkn) = O∗(1.47k). Can we also improve the polynomial
factor?

Observe that every node i in G of degree larger than k is necessarily in
the solution. (If we do not select i, we have to take all neighbors, but these
are too many.) Thus we can put all nodes of degree larger than k in the
solution, and delete the indicent edges, as they are covered. All this can be
done in O(kn) time.

There remains a graph H of yet uncovered edges, where all nodes have
degree at most k. Thus, k vertices of H can cover at most k2 edges of H.
Hence, if H has more than k2 edges, we know that no solution exists. This
also means: In the positive case we have found a subgraph H with at most
k2 edges, such that it remains to solve the hard Vertex Cover problem on
this small graph H only. The resulting time bound is O(1.47kk2+kn). Note
that we got rid of the product of the exponential term and n.

The above process is called kernelization, and the remaining small
graph H is called a problem kernel. We skip the exact technical definition of
kernels, however, we observe the important features in our problem example:
The size of the kernel depends only on the parameter k, but not on the
original size n, and the kernelization needs only polynomial time. Informally,
the kernel contains the hard part of the problem instance, whereas the easy
part has been cut away.

To put these results in a much more general context: Kernelization is
just a formal way of preprocessing an input, and it is widely used also
outside FPT problems. The idea is to take away simple parts of an instance
and pass only a miniaturized instance of the hard problem to the actual
algorithm. Thus, the underlying algorithm has to deal only with the hard
part, and if it is significantly smaller than the original instance, this saves
much computation time.

5


