
Advanced Algorithms Course.

Lecture Notes. Part 10

Dynamic Programming on Trees

Problems that are NP-complete in general graphs can become rather easy

in special graph classes. In practice, the input to a graph problem often

happens to be a tree. (For example, many real networks are hierarchical

structures.) Most problems on trees can be solved by bottom-up dynamic

programming. We illustrate the principle by the Weighted Vertex Cover

problem which is also equivalent to the Weighted Independent Set problem.

In the given tree we distinguish an arbitrary node r as the root. All edges

are oriented away from the root. This defines a directed tree T . For every

node, let Tv denote the subtree with root v, consisting of v and all nodes

reachable from v on directed paths. We denote the weight of a node v by

w(v). For every node v we define OPT (v, 1) and OPT (v, 0) as the minimum

weight of a vertex cover S in Tv with v ∈ S and v /∈ S, respectively. What

we want is the minimum of OPT (r, 1) and OPT (r, 0).

These values can be computed as follows. If v is a leaf, we immediately

have OPT (v, 1) = w(v) and OPT (v, 0) = 0. Now let v be an inner node,

and v1, . . . , vd the children of v. If v is not in the vertex cover, we have to

take all children, hence

OPT (v, 0) =
d∑

i=1

OPT (vi, 1).

. If v is in the vertex cover, we can independently decide for any child to

take it or not, and the minimum value is optimal. Hence we have

OPT (v, 1) = w(v) +
d∑

i=1

min(OPT (vi, 1), OPT (vi, 0)).

1



That’s all! The running time is O(n), since every node is involved in

only constantly many calculations for its parent node.

An actual solution can be obtained by backtracing in O(n) time. The

only difference to usual dynamic programming is that the backtracing pro-

cedure does not only follow one computation “path” but works on the whole

tree, from the root to all leaves.

It is also recommended to reflect upon the question why our OPT func-

tion needed the second (Boolean) argument, and dynamic programming with

some “OPT(v)” would not work for this problem.

As a side remark, the unweighted Vertex Cover problem can even be

solved by a greedy algorithm on trees. But for the weighted problem we do

need dynamic programming.

Randomized Algorithms continued

Median Finding and Selection

The so-called Selection problem asks to find the element of rank k in an

unsorted set S of n distinct numbers. The rank is the position that the ele-

ment would have if S were sorted in ascending oder. A simpler formulation

is: Find the k-th smallest element in S. The element with rank bn/2c is

called the median.

Median finding and Selection have nice applications in geometry and in

the analysis of statistical data. In addition to these motivations, recall the

1.5-approximation algorithn for Load Balancing. We had sorted the jobs

by their lengths. A closer look reveals that it is enough to separate the

m longest jobs from the shorter jobs, since neither the algorithm nor the

analysis uses any sorting within these two subsets of jobs.

To solve the Selection problem we may first sort S in O(n log n) time,

which makes the problem trivial. But instead we can avoid sorting and

solve Selection directly in O(n) time. There exists a deterministic divide-

and-conquer algorithm for Selection, but it is a bit complicated and, more

importantly, the hidden constant in O(n) is rather large. It is much more

advisable to apply a simple randomized algorithm like the following.

Choose an element s ∈ S called the splitter. Compare all elements to

s, in O(n) time. Now we know the rank r of s. If r > k then throw out s

and all elements larger than s. If r < k then throw out s and all elements

smaller than s, and set k := k − r. If r = k then return s. Repeat this

2



procedure recursively. The correctness of this algorithm should be obvious.

The only yet unspecified step is the choice of the splitter. Let us choose

a splitter at random. Intuitively, this is a good algorithm because a random

element will usually split the set in two reasonably well balanced subsets,

hence the number of elements to consider should decrease exponentially.

For a rigorous analysis of the expected time we simply introduce a “cut-

off point” that defines whether a splitting is well balanced or not. More

precisely, we call an element “central” in a set, if this element is smaller and

larger, respectively, than at least 1/4 of the elements.

We say that the algorithm is “in phase j” if the number of remaining

elements is between n(3/4)j+1 and n(3/4)j . Clearly, our random splitter

is central with probability 1/2. It follows immediately that the expected

number of splitters needed in every phase j is 2 = O(1), hence the expected

time of every phase is linear in the number of elements. Since
∑

j n(3/4)j is a

geometric series converging to some value O(n), the total expected number

of comparisons is still O(n), with some moderate hidden constant whose

analysis we omit here.

A Quick but Rigorous Analysis of Quicksort

The basic version of the famous Quicksort algorithm (which we do not repeat

here) works with a random splitter in every recursion step. For the sake of

a simple analysis we slightly modify the algorithm, however we keep it close

to the original Quicksort: We check after comparison to all other elements

whether the random splitter is central, and if not, we discard it altogether

and pick a new splitter. Of course, this is a certain waste of time. Hence

the original Quicksort performs no worse than this “slow Quicksort”.

We say that a subproblem is “of type j” if the number of elements is

between n(3/4)j+1 and n(3/4)j . We find a central splitter after an expected

number of only 2 attempts. Thus, the expected time spent on any sub-

problem of type j is O(n(3/4)j). Moreover, since we accepted only central

splitters, we can easily see that all subproblems of type j are pairwise dis-

joint, i.e., they deal with disjoint subsets of the entire set. Hence at most

(4/3)j+1 subproblems of type j can exist during the execution of the algo-

rithm. THerefore, by linearity of expectation, the expected time spent on

all subproblems of type j is O(n). Since only O(log n) types exist, the total

expected time is O(n log n).

3


