
Advanced Algorithms Course.

Lecture Notes. Part 11

Chernoff Bounds

This is a very useful general tool to bound the probabilities of certain random

variables deviating much from their expected values. Here we will derive one

version of this bound and then apply it to a simple load balancing problem.

Let X be sum of n independent 0-1 valued random variables Xi taking

value 1 with probability pi. Clearly E[X] =
∑
i pi. For µ := E[X] and any

δ > 0 we ask how likely it is that X > (1 + δ)µ, in other words, that X

exceeds its expected value by more than 100δ percent.

Since the exp function is monotone, this inequality is equivalent to

exp(tX) > exp(t(1 + δ)µ) for any t > 0. Exponentiation and this free

extra parameter t seem to make things more complicated, but we will see

very soon why this transformation is smart.

For any positive random variable Y and any number γ > 0 we have that

E[Y ] ≥ γPr(Y > γ). This is known as Markov’s inequality and follows

directly from the definition of E[Y ]. Choosing Y := exp(tX) and γ =

exp(t(1 + δ)µ), this yields Pr(X > (1 + δ)µ) ≤ exp(−t(1 + δ)µ)E[exp(tX)].

The idea of this transformation is to stretch the range of values of X and

thus to make Markov’s inequality stronger. The nice mathematical proper-

ties of the exponential function and the independence of the summands of

X are used as well in the following calculation.

Due to independence of the terms Xi we have

E[exp(tX)] = E[exp(
∑
i

tXi)] = E[
∏
i

exp(tXi)] =
∏
i

E[exp(tXi)]

=
∏
i

(pie
t + 1− pi) =

∏
i

(1 + pi(e
t − 1)) ≤

∏
i

exp(pi(e
t − 1))

= exp

(
(et − 1)

∑
i

pi

)
≤ exp((et − 1)µ).

1



This gives us the bound exp(−t(1+δ)µ) exp((et−1)µ). We can arbitrarily

choose t. With t := ln(1 + δ) our bound reads as
(

eδ

(1+δ)(1+δ)

)µ
.

The base depending on δ looks a bit complicated, however: Using eδ ≈
1 + δ one can see that the base is smaller than 1. For any fixed deviation δ

the base is constant, and the bound decreases exponentially in µ. The more

independent summands Xi we have in X, the smaller is the probability of

large deviations.

We conclude with a few short remarks:

One can also prove Chernoff bounds for the event X < (1− δ)µ.

A more common form of Chernoff bounds which is proved in a similar

way is exp(−cδ2µ), with some constant c > 0.

Hoeffding bounds are a generalization of Chernoff bounds where the

random variables do not have to be 0-1-valued.

Load Balancing

In order to show at least one application of Chernoff bounds, consider the

following simple load balancing problem: n jobs shall be assigned to n pro-

cessors, in such a way that no processor gets a high load. In contrast to the

Load Balancing problem we studied earlier, no central “authority” assigns

jobs to processors, but every job chooses a processor by itself. We want to

install a simple rule yet obtain a well balanced allocation. (An application is

distributed processing of independent tasks in networks.) To make the rule

as light-weight as possible, let every job choose a processor randomly and

independently. The jobs need not even “talk” to each other and negotiate

places. How good is this policy? What would you guess: How many jobs

will typically end up on the same processor?

To achieve clarity, consider the random variable Yi defined as the number

of jobs assigned to processor i. Clearly, E[Yi] = 1. The quantity we are

interested in is Pr(Yi > c), for a given threshold c. Since Yi is a sum of

independent 0-1 valued random variables (every job chooses processor i or

not), we can apply the Chernoff bound for X := Yi. With δ = c − 1 and

µ = 1 we immediately get the bound ec−1/cc < (e/c)c.

But this is only the probability bound for one processor. To bound the

probability that Yi > c holds for at least one of the n processors, we can

apply the union bound and multiply the above probability with n. Now it

is natural to ask: For which c will n(e/c)c be “small”?

2



At least, we must choose c large enough to make cc > n. As an auxiliary

calculation consider the equation xx = n. For such x we can state:

(1) x log x = log n and

(2) log x+ log log x = log log n.

Here we have just taken the logarithm twice. Equation (2) easily implies

log x < log logn < 2 log x.

Division by (1) yields

1/x < log log n/ log n < 2/x.

In other words, xx = n holds for some x = Θ(log n/ log log n).

Thus, if we choose c := ex, our Chernoff bound for every single processor

simplifies to 1/xex < 1/(xx)2 = 1/n2. This finally shows: With probability

1−1/n, every processor gets O(log n/ log logn) jobs. This answers our ques-

tion: Under random assignments, the maximum load can be logarithmic, but

it is unlikely to be worse.

Verifying a Matrix Product

Randomized algorithms are surprisingly simple and powerful for various

problems, however, they come with only probabilistic “guarantees”. A Las

Vegas algorithm may be fast on expectation, but in a particular case we

may have to wait longer for a result, which can be criticial in real-time ap-

plications. A Monte Carlo algorithm can err with some small but positive

probablity. Maybe this means only a slightly worse result, but maybe it

has disastrous consequences if the unlikely case happens. Then we have to

judge whether the risk is acceptable. This does not depend so much on the

mathematical problem, but on the real-world context where the algorithm

is applied. Such decisions even include ethical questions.

Amzingly, randomization can also lead to more rather than less safety,

as shown by the example below.

Even the result of a complex deterministic calculation can be false due

to hardware failure, a corrupted file or transmission errors. If accuracy is

very important, it may be good to efficiently verify the result afterwards by

an extra test, which can then be randomized.

A famous example is Freivald’s verifier for matrix multiplication. Many

technical calculations use linear algebra, and matrix multiplication is a fun-

damental operation. Let A and B be two given n×n matrices. Suppose that

3



we have computed their product C and want to check its correctness. The

naive idea is to recalculate AB in some other way and compare it to C. But

matrix multiplication costs O(n3) time. There exist subcubic algorithms,

but they are barely practical. In any case, significantly more than quadratic

time would be needed.

The idea for fast verification is to check whether ABx = Cx holds for

some vector x. Note that this requires only O(n2) time, as only matrix-

vector multiplications are involved: We first compute the vector Bx and

then A(Bx). If AB = C is true then, obviously, we get ABx = Cx. The

converse is not true: We may “incidentally” observe ABx = Cx although

AB 6= C. But how likely is the latter event?

This is where randomization comes in. Let x be a vector whose entries

are 0 or 1 (the real numbers, not Boolean values), independently and with

probability 1/2. Assume AB 6= C, hence the matrix D := AB−C has some

nonzero entry, without loss of generality in the upper left corner. Let dT

denote the first row of D. Let d′ and x′ be the vector d and x, without

the first entries d1 6= 0 and x1, respectively. Then the first entry of Dx

equals dTx = d1x1 + d′Tx′. For any fixed choice of x′, the second term is

constant. Now remember that the xi are independent. Thus x1 is still 0 or

1 with conditional probability 1/2. Moreover, since d1 6= 0, at least one of

these cases yields dTx 6= 0. We conclude that a false C passes the test with

probability at most 1/2.

Finally we can apply amplification and repeat this O(n2)-time test with

t independent vectors x, to reduce the error probability to 1/2t. Repeated

independent tests also reduce the probability of a wrong final answer due to

new errors in the calculations made by the verifier itself.

4


