
Advanced Algorithms Course.

Lecture Notes. Part 12

Hashing

This part may be skipped if you know hashing already very well from Data

Structure courses. But make sure that you also understand the probability

theory behind it.

Let U be a universe (a huge set) of elements. A dictionary is a data

structure that keeps track of a set S ⊂ U and supports the following op-

erations: insert, delete, lookup. That is, a dictionary enables us to quickly

insert, delete, and retrieve elements of a set.

Hash tables are among the most important implementations of dictionar-

ies. In the following, n is always some fixed size bound being much smaller

than |U |. A hash table H is an array of size n, with indices 0, . . . , n − 1,

where n ≥ |S|. That is, H allocates enough space for storing sets S of at

most n elements. However, several elements may be stored in the same entry

of H, for example as a list. Then we speak of collisions.

A hash function h maps U onto this index set. In order to execute any

of the dictionary operations for an element, we compute the index of that

element and access the corresponding entry of H. Of course, h must be

easily computable, and it is essential that our hash function keeps collisions

to a minimum: If many elements are stored in the same entry, we still

have to search for the desired element there, and this would slow down the

dictionary operation.

Since U is much larger than n, collisions cannot be avoided, but with

a good randomized approach we can keep their expected number small.

(Compare the situation to load balancing.) In the following, note again that

randomness is only in the algorithm (here: in the design of our hash function

h), but we do not make any probabilistic assumptions on the set S we want

to store.

1

Here is a classical simple hashing scheme, along with a rigorous analysis

of its performance. We will choose h at random from a certain class of easily

computable functions. We call a function class “universal” if for any pair

u, v ∈ U the probability of h(u) = h(v) is at most 1/n.

Being universal is a good property for hashing, because, if we pick a

random h from a universal class, then, for any fixed element u, the expected

number of other elements s ∈ S with h(s) = h(u) is at most 1, and we

barely get large bags of elements in the same entry of H. In particular, our

dictionary will be able to do any operation in O(1) expected time.

But do such universal classes of functions exist? Trivially, the class of

all functions from U into the index set has this property. But what would

it mean to choose a random h from the class of all functions? Since the

values of such h are random and independent, h has “no structure”, and we

can “compute” the values of h for given elements only by looking them up,

in a table of size |U |, which is against the very idea of hashing. We need

a restricted class of functions which are easily computable but still “shake

well” the elements of any subset with at most n elements. One possible

construction uses facts from elementary number theory.

We choose a prime number p slightly larger than our n. (Prime numbers

are “dense enough” in the set of integers, we will always find such p. We do

not go into details of this preprocessing step.) We represent the elements of

U as vectors x = (x1, . . . , xr) with 0 ≤ xi < p for all i. The dimensionality

we need is clearly r ≈ log |U |/ log p. (This may look complicated, but note

that these vectors can be seen as arbitrary “names” of the elements.) For

every a = (a1, . . . , ar) we define a hash function ha(x) = (
∑r

i=1 aixi) mod p.

For any given x ∈ U these values are really easy to compute. It remains

to analyze the collisions. We will see that the class of all functions ha is

universal.

Very little help from number theory is needed: If p is a prime number

and z 6= 0 mod p, then az = bz mod p implies a = b mod p for any two

numbers a, b. (The proof is straightforward.)

Using this fact we will show, for any two x, y ∈ U , that ha(x) = ha(y)

happens with probability at most 1/p. Recall where this probability comes

from: We took some random a.

Here is the proof. Since x 6= y, their vectors must differ somewhere.

Let j be some position where xj 6= yj . A nice trick makes the probability

calculation extremely simple: Instead of considering a random a, we fix all

ai, i 6= j, and choose only aj randomly, where 0 ≤ aj < p. Then the

2

probability result applies also to the random vector a. (Why?)

By the construction of ha, a collision ha(x) = ha(y) appears if and only

if aj(yj − xj) =
∑

i 6=j ai(xi − yi) mod p. Since we have fixed the right-

hand side, we can treat it as a constant, say m. Now define z := yj − xj .

Due to the above number-theoretic fact, there exists exactly one aj with

ajz = m mod p. Hence the probability of collision is 1/p ≤ 1/n, and our

hash table can execute dictionary operations in O(1) expected time.

A final remark: There is often confusion about the time complexity of

hash table operations: O(1) is the expected number of arithmetic opera-

tions. But the bit complexity is not constant. It grows logarithmically in

the size of the sets we want to deal with. Thus, hash tables are asymp-

totically not faster than other dictionary implementations such as balanced

search trees. The real advantage of hash tables is that they are easy to im-

plement (just evaluation of some simple functions) and use only arithmetic

operations, which are physically faster than manipulations with pointers,

etc., that would be needed to implement trees.

Closest Points

For the problem of finding a closest pair of n points in the plane there

exists a divide-and-conquer algorithm running in O(n log n) time. It follows

a simple idea but is a bit complicated when it comes to the implementation

details. Here we show a Las Vegas algorithm that is not only simpler but

also solves the problem already in O(n) expected time plus O(n) dictionary

operations.

We can always assume that our n points are in a unit square. In our al-

gorithm we maintain a real number d which is the smallest distance between

two points known so far.

We consider the n points in random order. For every new point p we

test whether p has distance smaller than d to some earlier point, and in this

case we update d.

For an efficient test we have to avoid computing the distances to all

earlier points. Therefore we divide the unit square into squares of side

length d/2. Since d is the smallest distance, at most one earlier point can be

located in each square. Moreover, those points which might have a distance

smaller than d to p are in squares close to the square containing p. More

precisely, they are in a 5× 5 grid of squares. Thus we have to test at most

25 candidates in every step. Hence O(n) computations are enough, for all n

3

points. So far we have not even used the fact that points are processed in

random order.

However, some complications begin here: We need to know which points

are in the candidate squares! For this purpose we may use a hash table, with

an entry for every point. But whenever d is diminshed, our partitioning into

squares of side length d/2 changes totally, and we have to create a new

hash table from scratch. How often do we have to insert our points into

the various hash tables? Only here the randomized order of points becomes

relevant.

Let X be a random variable for the total number of insertions. Let Xi

be another random variable, with Xi = 1 if the ith point causes an update,

and Xi = 0 else. Clearly, X = n +
∑

i iXi.

The key fact is that we have Xi = 1 with probability at most 2/i: For

each number i, the first i points are randomly ordered as well. Hence, the

event that some of the two points in a closest pair is exactly the ith point has

probability 2/i. Linearity of expectation gives E[X] = n +
∑

i iE[Xi] ≤ 3n.

Thus, the expected number of dictionary operations is O(n), and each of

them needs O(1) expected time.

From these two facts it follows that the total expected time is O(n). Stop!

The latter conclusion seems obvious at first glance. But referring to linearity

of expectation is not enough here, since the number of random variables to

be added is a random variable itself. A real proof needs a careful analysis

of conditional expectations, since we combine here two different sources of

randomness. But here we skip these technicalities.

4

