Advanced Algorithms. Assignment 2

Exercise 3.

Suppose that we are given a directed graph G = (V, E) with a source s and
a sink t, where every edge e has a (finite, non-negative) lower capacity [,
and a (finite or infinite) upper capacity ce, and we want to find a flow f in
G that respects these capacity constraints, with val(f) = k (or show that
no such flow exists), where the number k£ > 0 is also given. All numbers
(capacities, flow values) are assumed to be integers.

We assume that directed edges neither enter s nor leave ¢, and we define kg :=
max{d . (s ) les De=(v,t) le}. Obviously, k > ko is a necessary condition for
the existence of a flow.

Note that, unlike the ordinary Maximum Flow problem, the value k of the
flow is prescribed here, and certain edges must (at least) carry some pre-
scribed positive amounts of flow. Despite these differences, we would like
to solve this problem variant via a reduction to Maximum Flow. For the
following, recall the reductions LZ-red and CF-red from Lecture Notes 5.

3.1. Let G(k) be the graph obtained from G by introducing the demands
d(s) := —k, d(t) := +k, and d(v) := 0 for all other nodes v. Explain in a few
lines why the following equivalance is true: G has a flow f with val(f) =k
if and only if G(k) has a circulation.

3.2. Let H(k) be the graph obtained from G(k) by LZ-red, where k > ko.
Explain in a few lines why the following statements about H (k) are true:
The d(v) for v # s,t do not depend on k.

We still have d(s) < 0 and d(t) > 0.

3.3. Let J(k) be the graph obtained from H (k) by CF-red, where k > ko.
We denote the new source and sink by s’ and ¢, respectively. (Note that s
and t are retained as usual nodes.) Show that G has a flow f with val(f) =k
if and only if the maximum s’ — ¢ flow in J(k) saturates all the edges at
s’ and ¢'. (Thus, computing this flow and checking saturation solves the
problem introduced above.) Advice: Consider the whole chain of reductions
and use the already known facts about LZ-red and CF-red from Lecture
Notes 5. You should not need to write much.



Exercise 4.

We further elaborate on the problem from Exercise 3. There, a desired flow
value k was already given. Now, only G is given, and we want to find the
smallest value k; such that G has a flow f with val(f) = k1, or recognize
that G has no feasible flow at all.

4.1. Suppose that G has a flow, and we run the above method, but with
a too small value k < k1. Let g be the maximum flow we have computed
in J(k). Due to 3.3 we recognize that g does not saturate all the edges at
s’ and t'. Let us further use this flow g anyway, but with an incremented
value of k. Your task: Explain why the residual graph J(k 4 1), has an
augmenting path.

Remark and hint: 4.1 is the only more tricky part. Consider J(k;)y and use
“Ford-Fulkerson theory” from the course. — However, if you cannot manage
4.1, you can skip it, and use the claim of 4.1 to continue with the rest.

4.2. The result of 4.1 hints to an algorithm: We start with k& := kg and
check whether the maximum flow in J(k) saturates all edges at s’ and ¢'. If
so, we stop and output k1 := k. If not, we set k := k 4+ 1 and search for
augmenting paths in J(k). If none exists, we stop and report that G has
no flow. If augmenting paths exist, we augment the flow in J(k) as much
as possible (as the Ford-Fulkerson algorithm would do). — Argue why this
algorithm yields the correct output.

4.3. In the Path Edge Cover problem, we are given a directed acyclic graph
A with two distinguished nodes s and t. We wish to find a minimum number
of directed s — t paths that cover all edges, that is, every edge must be in
at least one of the selected paths. (If no solution exists at all, this shall be
recognized, too.) Clearly, this is a special case of the Set Cover problem.
Show that Path Edge Cover is also a special case of our minimum flow
problem. More precisely: Turn A in polynomial time into a graph G with
appropriate lower and upper edge capacities, and briefly show equivalence
of the problems. Do not forget that an equivalence has two directions.

4.4. Combine the results from 4.2 and 4.3 to show that Path Edge Cover is
solvable in polynomial time. In particular, state and motivate some polyno-
mial time bound, as a function of the graph size.



