MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology Examination in algebra: MMG500 and MVE 150, 2018-03-16. No aids are allowed. Telephone 031-772 5325.

- 1a) Let σ =(123) and τ =(145). Compute the commutator $\sigma \tau \sigma^{-1} \tau^{-1}$ in S_5 . 3p (The answer should be given in cycle form.)
- b) Show that $\sigma \tau \sigma^{-1} \tau^{-1}$ belongs to the subgroup A_5 of even cycles in S_5 .
- 2a) Let ϕ be a homomorphism from **Z** to a finite group *G* of order *n*. 3p Prove that $\langle n \rangle \subseteq \ker \phi$.
- b) Show that ker $\phi = \langle n \rangle$ if and only if ϕ is surjective.
- 3. Show that the rings $R = \mathbb{Z}[\sqrt{2}] = \{a+b\sqrt{2}: a,b \in \mathbb{Z}\}$ and $S = \{\begin{pmatrix} a & 2b \\ b & a \end{pmatrix}: a,b \in \mathbb{Z}\}$ are isomorphic.
- 4a) Verify that $1/(3+2\sqrt{2}) \in \mathbb{Z}[\sqrt{2}]$. 2p
- b) Prove that $R = \mathbb{Z}[\sqrt{2}]$ has infinitely many units.
- 5. Formulate and prove the fundamental homomorphism 4p theorem for groups.
- 6. Prove that any ideal of a polynomial ring F[x] over a field F is a principal ideal.

The theorems in Durbin's book may be used to solve exercises 1–4, but all claims that are made must be motivated.