Solutions to exam in algebra: MMG 500 and MVE 150, 2020-03-20.

- 1a) The operation is associative as l*(m*n) = l*(m+n-1) = l+(m+n-1) = (l+m-1)+n = (l*m)*n
- b) 1 is a neutral element for the given operation as m*1=(m+1)-1=m and 1*m=(1+m)-1=m
- c) * is an associative operation on **Z** with neutral element 1. We have also for any $m \in \mathbf{Z}$ that 2-m is inverse to m as m*(2-m)=(m+(2-m)-1)=1 and (2-m)*m=((2-m)+m)-1=1. Hence $(\mathbf{Z},*)$ is a group with 1 as identity.
- 2. We know by the fundamental theorem for abelian groups that any finite abelian group is isomorphic to a product of cyclic groups of prime power order. As 2020 has prime factorisation $2^2 \times 5 \times 101$ we thus conclude that any abelian group of order 2020 is isomorphic to $\mathbf{Z}_4 \times \mathbf{Z}_5 \times \mathbf{Z}_{101}$ or $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_5 \times \mathbf{Z}_{101}$. As by the above theorem these two groups are non-isomorphic, it follows that there are exactly two isomorphism classes of abelian groups of order 2020. (Remark: One can also represent the two isomorphism classes by \mathbf{Z}_{2020} and $\mathbf{Z}_2 \times \mathbf{Z}_{1010}$.)
- 3. As o(N) and o(G/N) are relatively prime we may find integers k and m with 1=o(N)k+o(G/N)m. Therefore, $Ng=((Ng)^{o(N)})^k((Ng)^{o(G/N)})^m$ in G/N by the power laws. Further, $(Ng)^{o(G/N)}=Ne$ for all $Ng\in G/N$ by a corollary of Lagrange's theorem. Hence $Ng=((Ng)^{o(G/N)})^m=(N(g^{o(G/N)}))^m=(Ne)^m=N$ and $g\in N$ for any $g\in G$ with $g^{o(N)}\in N$.
- 4. If rs is a zero divisor in R, then $rs\neq 0$ and (rs)t=0 for some $t\neq 0$ in R. If now $st\neq 0$, then r is a zero divisor as r(st)=0 and $r\neq 0$. If instead st=0, then s is a zero divisor as $s\neq 0$ and $t\neq 0$.
- 5a). This follows from the subring criterion as $(a+b\sqrt{6}i)\pm(c+d\sqrt{6}i)=(a\pm c)+(b\pm d)\sqrt{6}i$ $)\in \mathbb{Z}[\sqrt{-6}]$ and $(a+b\sqrt{6}i)(c+d\sqrt{6}i)=(ac-6bd)+(ad+bc)\sqrt{6}i\in \mathbb{Z}[\sqrt{-6}]$ for all a,b,c,d in \mathbb{Z} .
- b) Let N be the norm map with $N(a+b\sqrt{6}i)=a^2+6b^2$. This map is multiplicative as $N(a+b\sqrt{6}i)=|a+b\sqrt{6}i|^2$. So if $a+b\sqrt{6}i$ is inverse to $c+d\sqrt{6}i$ in $\mathbf{Z}[\sqrt{-6}]$ then $(a^2+6b^2)(c^2+6d^2)=N((a+b\sqrt{6}i)(c+d\sqrt{6}i))=N(1)=1$. But then $a^2+6b^2=1$ as $a^2+6b^2\in \mathbb{N}$ and $c^2+6d^2\in \mathbb{N}$. We have thus for any unit $a+b\sqrt{6}i$ that $a^2=1-6b^2\in (0,1]\cap \mathbb{Z}=\{1\}$, which implies that $a=\pm 1$ and b=0. There are therefore just two units in $\mathbb{Z}[\sqrt{-6}]$ given by ± 1 .
- c) If $a+b\sqrt{6}i$ and $c+d\sqrt{6}i$ are in $\mathbb{Z}[\sqrt{-6}]$, then $N((a+b\sqrt{6}i)(c+d\sqrt{6}i))=(a^2+6b^2)(c^2+6d^2)$. Also, if $b\neq 0$ then $a^2+6b^2\geq 6b^2\geq 6$ and if b=0 then $a^2+6b^2=a^2\geq 4$ if not $a=\pm 1$. We have therefore, if of $a+b\sqrt{6}i$ and $c+d\sqrt{6}i$ are non-units that $a^2+6b^2\geq 4$, $c+d\sqrt{6}i\geq 4$ and $N((a+b\sqrt{6}i)(c+d\sqrt{6}i))\geq 16$. The non-units 2,3, $\sqrt{6}i$, $-\sqrt{6}i$ are thus all irreducible as N(2)=4, N(3)=9 and $N(\sqrt{6}i)=N(-\sqrt{6}i)=6$. We have thus two different prime factorisations of 6 given by 2×3 and $(\sqrt{6}i)(-\sqrt{6}i)$ in $\mathbb{Z}[\sqrt{-6}]$, where 2 and 3 are not associates to $\pm\sqrt{6}i$. So $\mathbb{Z}[\sqrt{-6}]$ is not a UFD.
- 6a). If $I \subseteq R$ and $J \subseteq S$ are ideals in the rings R and S, then it follow from the subgroup criterion that $I \times J$ is an additive subgroup of $R \times S$. Further, if $(r,s) \in R \times S$ and $(i,j) \in I \times J$, then (r,s)(i,j) = (ri,sj) and (i,j) (r,s) = (ir,js) are both in $I \times J$, such that $I \times J$ is an ideal of $R \times S$. If we apply this to the two trivial ideals in R and S, then we get four ideals $R \times S$, $R \times \{0_S\}$, $\{0_R\} \times S$, $\{0_R\} \times \{0_S\}$ in $R \times S$ for any two rings and in particular for fields R = K and S = L.
- b) Let I be an ideal in $K \times L$ for two fields K and L. There are then four cases.

Case 1: There exists $(a,b) \in I$ with $a \neq 0_R$ and $b \neq 0_S$. Then $(a^{-1},b^{-1})(a,b) = (1_R,1_S) \in I$ such that $I = K \times L$ as any $(r,s) = (r,s)(1_R,1_S) \in I$.

Case 2: $I \subseteq K \times \{0_L\}$, but $I \neq \{0_K\} \times \{0_L\}$. We have then that $(a,0) \in I$ for some $a \neq 0$ and hence that $(a^{-1},0)(a,0)) = (1_R,0_L) \in I$. But then $I = K \times \{0_L\}$ as any element $(r,0) \in K \times \{0_L\}$ lies in I as $(r,0) = (r,0)(1,0) \in I$.

Case 3: $I \subseteq \{0_K\} \times L$, but $I \neq \{0_K\} \times \{0_L\}$. Then $(0_R, 1_L) \in I$ and $I = \{0_K\} \times L$ by the same arguments as in case 2.

Case 4: $I = \{0_K\} \times \{0_L\}$.

There are thus no other ideals in $K \times L$ than $K \times L$, $K \times \{0_L\}$, $\{0_K\} \times L$ and $\{0_K\} \times \{0_L\}$ if K and L are fields.