Solutions for TDA357/DIT621 2019-06-10

1. a)

.\@ Route @ Station

D A

Vehicle @

b)
X(x1,x2)
2(21,22)

Y(yl,y2,2)
z->7.21

Rxyz(x,z,y1,y2,yz)
X -> X.x1
z->72.21

(yl,y2,yz) ->Y.(yl,y2,z)

2
a) Update anomaly e.g. when changing the name of Hermione in on of the two places it occurs.

Deletion anomaly e.g. if deleting all grades issued for course TDA357 and losing the information on the
number of credits the course has.

b)

student_id -> student_name
course_id -> credits
(student_id, course_id) -> grade

<)
Students(student id, student_name) -- 4 rows

Courses(course id, credits) -- 3 rows

Grades(student id, course id, grade) -- 6 rows

3) SQL Queries (not actually tested these, but they sure look pretty...)

a)

SELECT username, email, contents
FROM users
WHERE receiver="admin' AND sender=username AND readtime IS NULL
ORDER BY sendtime ASC

b)

SELECT AVG(readtime - sendtime)
FROM messages
WHERE readtime IS NOT NULL

c)
-- Something like this using WITH, other solutions are possible. Comments are not needed.
WITH
-- Number of messages sent from each user to each receiver
Cnt AS SELECT sender, receiver, COUNT(*) AS cnt
FROM Messages
GROUP BY sender, receiver

’

-- The maximal number for each sender
Mx AS SELECT sender, MAX(cnt) as mx FROM cnt
GROUP BY sender

’

-- The most common receiver(s) of each sender
Common AS SELECT Cnt.sender, receiver FROM Cnt, Mx
WHERE Mx.sender = Cnt.sender AND cnt=mx

-- Include users that have not sent any messages
SELECT username, receiver
FROM Users LEFT OUTER JOIN Common ON username=sender

a)

Tlhame, quantity (
O(designation='L' OR designation="XL') AND size_number<=max_number AND size_number>=min_number (

Items X Sizes

)
b)

TUdesignation(
Omin_number > max_number(
(Ttdesignation,min_number(Sizes))
X
(Ttmax_number(Odesignation="m' (Sizes)))

)
c)

Vsum(quantity)->total(

O(designation='L' AND size_number<=max_number AND size_number>=min_number (

Items X Sizes

)

5 Again — haven’t tested this, not likely to work out of the box, but good enough for full marks

CREATE TABLE Dots_t (
X pos INT,

y_pos INT,
idnr INT PRIMARY KEY, -— a
UNIQUE (x pos, y pos) -- a

) ;

CREATE Table Conn_t (

from idnr INT REFERENCES Dots t.idnr --
ON DELETE CASCADE, -

to idnr INT REFERENCES Dots t.idnr -
ON DELETE CASCADE, -

CHECK (from idnr != to idnr) -—

PRIMARY KEY (from idnr, to idnr) -=

) ;

O O O O

CREATE View Connections AS
SELECT from idnr, to_idnr FROM Conn_t
UNION
SELECT to_idnr, from idnr FROM Conn_t; -- e

CREATE VIEW Dots AS
SELECT
X _pos,
Y_Ppos,
idnr,
(SELECT COUNT (*) FROM Connections WHERE from idnr=idnr) AS radix --cC
FROM Dots t;

—-—- Acceptable pseudo-code for trigger:
CREATE TRIGGER BEFORE INSERT ON Dots t -- d

IF ((SELECT radix FROM Dots WHERE idnr=NEW.from idnr) >= 8 OR
(SELECT radix FROM Dots WHERE idnr=NEW.to idnr) >= 8)
ROLLBACK;

6

a) Here, measurements are simply any objects with a time value, and requests are objects with "user",
"request" and "reply" values. One could add a "type" property to distinguish them.

[{"time":1560000000,
"temperature":21,
"windspeed":0,
"rainfall":{"errnum":213, "text":"no value found"}

y

{"user":"Jonas",
"request": ["temperature","rainfall"],
"reply":
{"time":1560000000,
"temperature":21,
"rainfall":{"errnum":213, "text":"no value found"}

}

]

b)
{
"type":"array",
"items":{"type":"object",
"oneOf": [{"Sref":"#/definitions/measurement"},
{"Sref":"#/definitions/request"}]},

"definitions":{

"measurement": {"type":"object",
"additionalProperties":{"Sref":"#/definitions/value"},
"required":["time"]},

"request": {"properties": {

"user": {"type":"string"},
"request": {"type":"array", "items":{"type":"string"}},
"reply": {"Sref":"#/definitions/measurement"}},

"required": ["user", "request", "reply"]l},

"value":{"oneOf": [{"type":"integer"}, {"Sref":"#/definitions/error"}]},
"error": {"type":"object",
"properties":{ "errnum":{"type":"integer"},
"text": {"type":"string"}},
"required": ["errnum", "text"]}

}
c) Easy points. May be a lot more complicated for other JSON Schemas.

$.*.temperature

