
Databases

TDA357/DIT621– LP3 2023

Lecture 3

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Dureg̊ard)

January 19th 2023

Recall Last Lecture

SQL DDL (data definition language): Create, delete and alter
database tables;

Types and constraints;

Relational schemas;

SQL DML (data manipulation language): Insert, update and delete
data in tables;

Database queries involving one table;

Group-by and aggregations.

January 19th 2023, Lecture 3 TDA357/DIT621 1/24

Overview of Today’s Lecture

More SQL:

Local definitions;
Views;
Set operations (unions, intersections, excepts);
Databases with several tables;
Database queries involving several tables;
Cross products and joins;
Exists and not exists;
Dealing with and avoiding empty values.

We leave Foreign keys for next lecture.

January 19th 2023, Lecture 3 TDA357/DIT621 2/24

Our Running Database

Relational schema:

Countries (name, abbr, capital, area, population, continent, currency)
Unique abbr
population > 0

SQL:

CREATE TABLE Countries (
name TEXT PRIMARY KEY,
abbr CHAR(2) NOT NULL UNIQUE,
capital TEXT NOT NULL,
area FLOAT NOT NULL,
population INT NOT NULL CHECK (population >= 0),
continent CHAR(2),
currency CHAR(3));

January 19th 2023, Lecture 3 TDA357/DIT621 3/24

Local Definitions

Creating a table on the fly:

SELECT *
FROM (SELECT name, CEIL(population/area) AS density

FROM Countries) AS Densities
ORDER BY density DESC
LIMIT 5;

Note: Does not work without the aliasing of the table!

Using WITH statement:

WITH Densities AS
(SELECT name, FLOOR(population/area) AS density
FROM Countries)

SELECT *
FROM Densities
ORDER BY density DESC
LIMIT 5;

January 19th 2023, Lecture 3 TDA357/DIT621 4/24

Views

We can give names to a query and then use it as if it were a table.

Creates/replaces a view:

CREATE VIEW Densities AS
(SELECT name, ROUND(population/area) AS density FROM Countries);

CREATE OR REPLACE VIEW Densities AS
(SELECT name, ROUND(population/area) AS density, abbr FROM Countries);

Uses the view as if it were a table:

SELECT name FROM Densities
ORDER BY density DESC LIMIT 3;

SELECT name, abbr FROM Densities
ORDER BY density ASC LIMIT 3;

Removes a view:

DROP VIEW Densities;

January 19th 2023, Lecture 3 TDA357/DIT621 5/24

Materialized Views

Creates a special kind of table with the result of a query reflecting
only the data that is in the original table when it is queried:

CREATE MATERIALIZED VIEW MDensities AS
(SELECT name, ROUND(population/area) AS density FROM Countries);

When the data in the original table changes, the query result needs to
be updated; materialized views are NOT automatically updated:

REFRESH MATERIALIZED VIEW MDensities;

This might require to recompute the whole query when a table is
updated. If updates are more frequent than selections, the
materialized view will be less efficient than a virtual view.

Removes a materialized view:

DROP MATERIALIZED VIEW MDensities;

January 19th 2023, Lecture 3 TDA357/DIT621 6/24

Set Operations in Relational Databases: UNION

A ∪ B = {x | x ∈ A or x ∈ B}

The tables need to have comparable types!

Selects currencies in America and Europe (set union!):

SELECT currency FROM Countries WHERE continent = ’AM’
UNION
SELECT currency FROM Countries WHERE continent = ’EU’

Same with (possible) repetition in the result:

SELECT currency FROM Countries WHERE continent = ’AM’
UNION ALL
SELECT currency FROM Countries WHERE continent = ’EU’

Compare with (resp.):

SELECT DISTINCT currency FROM Countries
WHERE continent IN (’AM’, ’EU’);

SELECT currency FROM Countries WHERE continent IN (’AM’, ’EU’);

January 19th 2023, Lecture 3 TDA357/DIT621 7/24

More Examples

Selects the maximum and minimum population:

SELECT MAX(population) AS max min pop FROM Countries
UNION
SELECT MIN(population) AS max min pop FROM Countries;

Classifies countries into small and big:

SELECT name, ’small’ AS size FROM Countries WHERE area < 300000
UNION
SELECT name, ’big’ AS size FROM Countries WHERE area >= 300000;

January 19th 2023, Lecture 3 TDA357/DIT621 8/24

Set Operations in Relational Databases: INTERSECT

A ∩ B = {x | x ∈ A and x ∈ B} OBS: A ∩ B ⊆ A,B

The tables need to have comparable types!

Selects common sets of country names and capitals (set intersection!):

SELECT name AS place FROM Countries
INTERSECT
SELECT capital AS place FROM Countries;

Compare with this query, are they the same?

SELECT name FROM Countries WHERE name = capital;

Keeps duplicates (result of intersect should be included in each subquery!):

SELECT name AS place FROM Countries
INTERSECT ALL
SELECT capital AS place FROM Countries;

January 19th 2023, Lecture 3 TDA357/DIT621 9/24

Set Operations in Relational Databases: EXCEPT

S − A = {x | x ∈ S and x /∈ A}

The selections need to have comparable types!

Selects all currencies except those that are not Euro (set diference!):

SELECT currency FROM Countries
EXCEPT
SELECT currency FROM Countries WHERE currency != ’EUR’;

Keeps duplicates:

SELECT currency FROM Countries
EXCEPT ALL
SELECT currency FROM Countries WHERE currency != ’EUR’;

Compare with (resp.):

SELECT DISTINCT currency FROM Countries WHERE currency = ’EUR’;
SELECT currency FROM Countries WHERE currency = ’EUR’;

January 19th 2023, Lecture 3 TDA357/DIT621 10/24

Example: Complex Query

/* This query makes not much sense!
But it is quite complex! :)
*/

WITH
ManyPeople AS

(SELECT name, area, ’many’ AS size FROM Countries
WHERE population >= 10000000),

FewPeople AS
(SELECT name, area, ’few’ AS size FROM Countries
WHERE population < 6000000)

(- - Removes American countries from FewPeople
SELECT name, size FROM FewPeople
EXCEPT
SELECT name, ’few’ FROM Countries WHERE continent = ’AM’)
UNION - - puts the results together
(- - Keeps countries with big area from ManyPeople
SELECT name, size FROM ManyPeople
INTERSECT
SELECT name, ’many’ FROM Countries WHERE area > 2500000);

January 19th 2023, Lecture 3 TDA357/DIT621 11/24

Adding a New Table to Our Database

Let us now add the table Currencies (and some values) to our database:

Code Name Value

SEK Swedish Krona 1

DKK Danish Krone 1.36

EUR Euro 10.17

ARS Peso Argentino 0.1

UYU Peso Uruguayo 0.2

USD Dollar 8.28

BTC Bitcoin 85634.34

Relational schema and SQL definition:

Currencies (code, name, value)

CREATE TABLE Currencies (
code CHAR(3) PRIMARY KEY,
name TEXT,
value FLOAT);

January 19th 2023, Lecture 3 TDA357/DIT621 12/24

Queries Involving Several Tables

SELECT Countries.name, code, Currencies.name, value
FROM Countries, Currencies;

Note: Observe the qualified selections Countries.name and
Currencies.name to disambiguate.

Alternatively,

SELECT Co.name, code, Cu.name, value
FROM Countries AS Co, Currencies AS Cu;

Under the hood:

The cartesian product (cross product) of both tables is generated
(size |Countries| × |Currencies|);

The desired columns are selected.
January 19th 2023, Lecture 3 TDA357/DIT621 13/24

Queries Involving Several Tables: New Attempt

SELECT Co.name AS country, code, Cu.name AS currency, value
FROM Countries AS Co, Currencies AS Cu
WHERE currency = code;

SELECT Co.name AS country, code, Cu.name AS currency, value
FROM Countries Co, Currencies Cu
WHERE currency = code;

Under the hood:

The cartesian product (cross product) of both tables is generated
(size |Countries| × |Currencies|);

The rows satisfying the condition “currency = code” are chosen;

The desired columns are selected.

January 19th 2023, Lecture 3 TDA357/DIT621 14/24

Cross Product same as Inner Join

These queries are equivalent.

We obtain only the rows with “matching currencies”.

SELECT Countries.name, code, Currencies.name, value
FROM Countries, Currencies
WHERE currency = code;

SELECT Countries.name, code, Currencies.name, value
FROM Countries CROSS JOIN Currencies
WHERE currency = code;

SELECT Countries.name, code, Currencies.name, value
FROM Countries JOIN Currencies ON currency = code;

SELECT Countries.name, code, Currencies.name, value
FROM Countries INNER JOIN Currencies ON currency = code;

January 19th 2023, Lecture 3 TDA357/DIT621 15/24

Outer Join: RIGHT, LEFT, FULL
Includes all currencies, even if no countries are using them:

SELECT Countries.name, code, Currencies.name, value
FROM Countries RIGHT OUTER JOIN Currencies ON currency = code;

SELECT Countries.name, currency, Currencies.name, value
FROM Countries RIGHT OUTER JOIN Currencies ON currency = code;

Includes all countries, even if their currencies are not in Currencies:

SELECT Countries.name, code, Currencies.name, value
FROM Countries LEFT OUTER JOIN Currencies ON currency = code;

SELECT Countries.name, currency, Currencies.name, value
FROM Countries LEFT OUTER JOIN Currencies ON currency = code;

Includes info from all rows in both tables:

SELECT Countries.name, code, Currencies.name, value
FROM Countries FULL OUTER JOIN Currencies ON currency = code;

SELECT Countries.name, currency, Currencies.name, value
FROM Countries FULL OUTER JOIN Currencies ON currency = code;

January 19th 2023, Lecture 3 TDA357/DIT621 16/24

Some Simple New Tables

Assume these tables:

CREATE TABLE Capitals (
country TEXT PRIMARY KEY,
capital TEXT);

CREATE TABLE CurrencyCodes (
country TEXT PRIMARY KEY,
currency CHAR(3));

with the following entries:

country capital

Sweden Stockholm

Norway Oslo

France Paris

country currency

Norway NOK

Germany EUR

Sweden SEK

Note: Observe that the attribute/column containing the name of the
country has the same name and type in both tables.
January 19th 2023, Lecture 3 TDA357/DIT621 17/24

Natural Join
The joins are based on the columns with the same name.

Inner joins: only countries that appear in both tables.
These queries are (almost) equivalent:

SELECT * FROM Capitals, CurrencyCodes
WHERE Capitals.country = CurrencyCodes.country;

SELECT * FROM Capitals JOIN CurrencyCodes
ON Capitals.country = CurrencyCodes.country;

SELECT * FROM Capitals JOIN CurrencyCodes USING (country);

SELECT * FROM Capitals NATURAL INNER JOIN CurrencyCodes;

SELECT * FROM Capitals NATURAL JOIN CurrencyCodes;

Outer joins: all capitals vs. all currencies vs. all info.
The word OUTER is not needed:

SELECT * FROM Capitals NATURAL LEFT JOIN CurrencyCodes;

SELECT * FROM Capitals NATURAL RIGHT JOIN CurrencyCodes;

SELECT * FROM Capitals NATURAL FULL JOIN CurrencyCodes;

January 19th 2023, Lecture 3 TDA357/DIT621 18/24

Playing with Outer Join

The following queries give slightly different results:

Compare

SELECT *
FROM Capitals LEFT/RIGHT/FULL OUTER JOIN CurrencyCodes
ON (Capitals.country = CurrencyCodes.country);

with

SELECT *
FROM Capitals LEFT/RIGHT/FULL OUTER JOIN CurrencyCodes
USING (country);

Compare

SELECT Capitals.country, capital, currency
FROM Capitals FULL OUTER JOIN CurrencyCodes USING (country);

with

SELECT CurrencyCodes.country, capital, currency
FROM Capitals FULL OUTER JOIN CurrencyCodes USING (country);

January 19th 2023, Lecture 3 TDA357/DIT621 19/24

IN and NOT IN vs. EXISTS and NOT EXISTS

The following queries are equivalent:

Selects all currencies used in some country:

SELECT code, Currencies.name FROM Currencies
WHERE code IN (SELECT currency FROM Countries);

SELECT code, Currencies.name FROM Currencies
WHERE EXISTS

(SELECT * FROM Countries WHERE currency = code);

Selects all currencies not used in any country:

SELECT code, Currencies.name FROM Currencies
WHERE code NOT IN (SELECT currency FROM Countries);

SELECT code, Currencies.name FROM Currencies
WHERE NOT EXISTS

(SELECT * FROM Countries WHERE currency = code);

January 19th 2023, Lecture 3 TDA357/DIT621 20/24

Something to Take into Account about Empty Values

What is the result of

SELECT country FROM CurrencyCodes WHERE currency = ’EUR’

SELECT country FROM CurrencyCodes WHERE currency = currency

when currency is empty? (has value NULL)

Answer: Neither TRUE or FALSE but UNKNOWN!
UNKNOWN is excluded in conditions and treated as FALSE.

Use “x IS NULL” or “x IS NOT NULL” to check if x is empty or not
(they always give TRUE or FALSE)!

January 19th 2023, Lecture 3 TDA357/DIT621 21/24

Three-valued Logic: TRUE, FALSE, UNKNOWN

The truth-table has 9 rows:

p q NOT p p AND q p OR q

TRUE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE FALSE TRUE

TRUE UNKNOWN FALSE UNKNOWN TRUE

FALSE TRUE TRUE FALSE TRUE

FALSE FALSE TRUE FALSE FALSE

FALSE UNKNOWN TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN TRUE

UNKNOWN FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

In general, good to try to avoid empty values but sometimes they might
be needed.

Recall also that the result of a query could give empty values!

January 19th 2023, Lecture 3 TDA357/DIT621 22/24

Getting Rid of Empty Values in Queries

Even if we do not allow empty values in our tables, the result of a query
can contain empty values (for example with OUTER JOIN).

COALESCE takes a list of values and returns the first non-empty value.

Useful to replace null values with constants of the appropriate type.

SELECT country, COALESCE (capital, ’no capital’),
COALESCE (currency, ’no currency’)

FROM Capitals NATURAL FULL JOIN CurrencyCodes;

We can also give a better name to the column:

SELECT country, COALESCE (capital, ’no capital’) AS capital,
COALESCE (currency, ’no currency’) AS currency

FROM Capitals NATURAL FULL JOIN CurrencyCodes;

January 19th 2023, Lecture 3 TDA357/DIT621 23/24

Overview of Next Lecture

Foreign keys;

More about consistency:

Policies on referencial contraints;
Assertions;

Summary of SQL;

Summary of relational schemas;

Example.

Reading:

Book: chapter 2, 6.1–6.5 and 7.1–7.4

Notes: chapter 2 and 7.4.1–7.4.3

January 19th 2023, Lecture 3 TDA357/DIT621 24/24

