Lecture 3

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Duregérd)

January 19th 2023

o SQL DDL (data definition language): Create, delete and alter
database tables;

Types and constraints;

Relational schemas;

SQL DML (data manipulation language): Insert, update and delete
data in tables;

Database queries involving one table;

Group-by and aggregations.

TDA357/DIT621

o More SQL:
o Local definitions;
Views;
Set operations (unions, intersections, excepts);
Databases with several tables;
Database queries involving several tables;
Cross products and joins;
Exists and not exists;
Dealing with and avoiding empty values.

o We leave Foreign keys for next lecture.

January 19th e3 TDA357/DIT621

o Relational schema:

Countries (name, abbr, capital, area, population, continent, currency)
Unique abbr
population > 0

o SQL:

CREATE TABLE Countries (
name TEXT PRIMARY KEY,
abbr CHAR(2) NOT NULL UNIQUE,
capital TEXT NOT NULL,
area FLOAT NOT NULL,
population INT NOT NULL CHECK (population >= 0),
continent CHAR(2),
currency CHAR(3));

January 19th 2023, Lecture 3 TDA357/DIT621

o Creating a table on the fly:

SELECT *

FROM (SELECT name, CEIL(population/area) AS density
FROM Countries) AS Densities

ORDER BY density DESC

LIMIT 5;

Note: Does not work without the aliasing of the table!

o Using WITH statement:

WITH Densities AS
(SELECT name, FLOOR(population/area) AS density
FROM Countries)

SELECT *

FROM Densities

ORDER BY density DESC

LIMIT 5;

January 19th 2023, Lecture 3 TDA357/DIT621

We can give names to a query and then use it as if it were a table.

o Creates/replaces a view:

CREATE VIEW Densities AS
(SELECT name, ROUND(population/area) AS density FROM Countries);

-

CREATE OR REPLACE VIEW Densities AS
(SELECT name, ROUND(population/area) AS density, abbr FROM Countries);

o Uses the view as if it were a table:

SELECT name FROM Densities
ORDER BY density DESC LIMIT 3;

J

~

SELECT name, abbr FROM Densities
ORDER BY density ASC LIMIT 3;

o Removes a view:
(DROP VIEW Densities;)

January 19th 2023, Lecture 3 TDA357/DIT621

o Creates a special kind of table with the result of a query reflecting
only the data that is in the original table when it is queried:

CREATE MATERIALIZED VIEW MDensities AS
(SELECT name, ROUND(population/area) AS density FROM Countries);

o When the data in the original table changes, the query result needs to
be updated; materialized views are NOT automatically updated:

(REFRESH MATERIALIZED VIEW MDensities;]

o This might require to recompute the whole query when a table is
updated. If updates are more frequent than selections, the
materialized view will be less efficient than a virtual view.

o Removes a materialized view:

(DROP MATERIALIZED VIEW MDensities;]

y 19th 2023, Lecture 3 TDA357/DIT621

AUB={x|x€Aorxe B}

The tables need to have comparable types!

o Selects currencies in America and Europe (set union!):

SELECT currency FROM Countries WHERE continent = 'AM’
UNION
SELECT currency FROM Countries WHERE continent = 'EU’

@ Same with (possible) repetition in the result:

SELECT currency FROM Countries WHERE continent = 'AM’
UNION ALL
SELECT currency FROM Countries WHERE continent = 'EU’

o Compare with (resp.):
SELECT DISTINCT currency FROM Countries
WHERE continent IN ("AM’, '"EU");
SELECT currency FROM Countries WHERE continent IN ("AM’, "EU’);

January 19th 2023, Lecture 3 TDA357/DIT621

o Selects the maximum and minimum population:

SELECT MAX(population) AS max_min_pop FROM Counttries
UNION
SELECT MIN(population) AS max_min_pop FROM Countries;

o Classifies countries into small and big:

SELECT name, 'small’ AS size FROM Countries WHERE area < 300000
UNION
SELECT name, 'big" AS size FROM Countries WHERE area >= 300000;

January 19th 2023, Lecture 3 TDA357/DIT621

ANB={x|xcAandxec B} OBS:ANBCAB

The tables need to have comparable types!

o Selects common sets of country names and capitals (set intersection!):

SELECT name AS place FROM Countries
INTERSECT
SELECT capital AS place FROM Countries;

Compare with this query, are they the same?

(SELECT name FROM Countries WHERE name = capital;]

o Keeps duplicates (result of intersect should be included in each subquery!):

SELECT name AS place FROM Countries
INTERSECT ALL
SELECT capital AS place FROM Countries;

January 19th 2023, Lecture 3 TDA357/DIT621

S—A={x|xeSand x ¢ A}

The selections need to have comparable types!

o Selects all currencies except those that are not Euro (set diference!):

SELECT currency FROM Countries
EXCEPT
SELECT currency FROM Countries WHERE currency != 'EUR’;

o Keeps duplicates:

SELECT currency FROM Countries
EXCEPT ALL
SELECT currency FROM Countries WHERE currency != "EUR’;

o Compare with (resp.):

SELECT DISTINCT currency FROM Countries WHERE currency = 'EUR’;
SELECT currency FROM Countries WHERE currency = 'EUR’;

January 19th 2023, Lecture 3 TDA357/DIT621

/* This query makes not much sense!
But it is quite complex! :)

*/

WITH
ManyPeople AS
(SELECT name, area, 'many’ AS size FROM Countries
WHERE population >= 10000000),
FewPeople AS
(SELECT name, area, 'few’ AS size FROM Countries
WHERE population < 6000000)
(-- Removes American countries from FewPeople
SELECT name, size FROM FewPeople
EXCEPT
SELECT name, 'few’ FROM Countries WHERE continent = 'AM’)
UNION -- puts the results together
(-- Keeps countries with big area from ManyPeople
SELECT name, size FROM ManyPeople
INTERSECT
SELECT name, 'many’ FROM Countries WHERE area > 2500000);

January 19th 2023, Lecture 3 TDA357/DIT621

Let us now add the table Currencies (and some values) to our database:

| Code | Name | Value |
SEK Swedish Krona | 1
DKK | Danish Krone 1.36
EUR | Euro 10.17
ARS Peso Argentino | 0.1
UYU | Peso Uruguayo | 0.2
USD | Dollar 8.28
BTC | Bitcoin 85634.34

Relational schema and SQL definition:

[Currencies (code, name, value)]

CREATE TABLE Currencies (
code CHAR(3) PRIMARY KEY,
name TEXT,
value FLOAT);

January 19th 2023, Lecture 3

TDA357/DIT621

SELECT Countries.name, code, Currencies.name, value
FROM Countries, Currencies;

Note: Observe the qualified selections Countries.name and
Currencies.name to disambiguate.

Alternatively,

SELECT Co.name, code, Cu.name, value
FROM Countries AS Co, Currencies AS Cu;

Under the hood:

@ The cartesian product (cross product) of both tables is generated
(size |Countries| x |Currencies|);

o The desired columns are selected.

January 19th 2023, Lecture 3 TDA357/DIT621

SELECT Co.name AS country, code, Cu.name AS currency, value
FROM Countries AS Co, Currencies AS Cu
WHERE currency = code;

SELECT Co.name AS country, code, Cu.name AS currency, value
FROM Countries Co, Currencies Cu
WHERE currency = code;

Under the hood:

o The cartesian product (cross product) of both tables is generated
(size |Countries| x |Currencies|);

o The rows satisfying the condition “currency = code” are chosen;

@ The desired columns are selected.

January 19th 2023, Lecture 3 TDA357/DIT621

These queries are equivalent.

We obtain only the rows with “matching currencies”.

SELECT Countries.name, code, Currencies.name, value
FROM Countries, Currencies
WHERE currency = code;

SELECT Countries.name, code, Currencies.name, value
FROM Countries CROSS JOIN Currencies
WHERE currency = code;

SELECT Countries.name, code, Currencies.name, value
FROM Countries JOIN Currencies ON currency = code;

SELECT Countries.name, code, Currencies.name, value
FROM Countries INNER JOIN Currencies ON currency = code;

TDA357/DIT621

January 19th 2023, Lecture 3

@ Includes all currencies, even if no countries are using them:

SELECT Countries.name, code, Currencies.name, value
FROM Countries RIGHT OUTER JOIN Currencies ON currency = code;

SELECT Countries.name, currency, Currencies.name, value
FROM Countries RIGHT OUTER JOIN Currencies ON currency = code;

Includes all countries, even if their currencies are not in Currencies:

SELECT Countries.name, code, Currencies.name, value
FROM Countries LEFT OUTER JOIN Currencies ON currency = code;

SELECT Countries.name, currency, Currencies.name, value
FROM Countries LEFT OUTER JOIN Currencies ON currency = code;

Includes info from all rows in both tables:

SELECT Countries.name, code, Currencies.name, value
FROM Countries FULL OUTER JOIN Currencies ON currency = code;

SELECT Countries.name, currency, Currencies.name, value
FROM Countries FULL OUTER JOIN Currencies ON currency = code;

January 19th 2023, Lecture 3 TDA357/DIT621

Assume these tables:

CREATE TABLE Capitals (
country TEXT PRIMARY KEY,
capital TEXT);

CREATE TABLE CurrencyCodes (
country TEXT PRIMARY KEY,
currency CHAR(3));

with the following entries:

| country | capital | | country | currency |
Sweden | Stockholm Norway NOK
Norway | Oslo Germany | EUR
France Paris Sweden SEK

Note: Observe that the attribute/column containing the name of the
country has the same name and type in both tables.

January 19th 2023, Lecture 3

TDA357/DIT621

The joins are based on the columns with the same name.

o Inner joins: only countries that appear in both tables.
These queries are (almost) equivalent:

SELECT * FROM Capitals, CurrencyCodes
WHERE Capitals.country = CurrencyCodes.country;

SELECT * FROM Capitals JOIN CurrencyCodes

ON Capitals.country = CurrencyCodes.country;

SELECT * FROM Capitals JOIN CurrencyCodes USING (country);
SELECT * FROM Capitals NATURAL INNER JOIN CurrencyCodes;
SELECT * FROM Capitals NATURAL JOIN CurrencyCodes;

o Outer joins: all capitals vs. all currencies vs. all info.
The word OUTER is not needed:

SELECT * FROM Capitals NATURAL LEFT JOIN CurrencyCodes;
SELECT * FROM Capitals NATURAL RIGHT JOIN CurrencyCodes;
SELECT * FROM Capitals NATURAL FULL JOIN CurrencyCodes;

January 19th 2023, Lecture 3 TDA357/DIT621

The following queries give slightly different results:

o Compare

SELECT *
FROM Capitals LEFT/RIGHT /FULL OUTER JOIN CurrencyCodes
ON (Capitals.country = CurrencyCodes.country);

with

SELECT *
FROM Capitals LEFT/RIGHT /FULL OUTER JOIN CurrencyCodes
USING (country);

o Compare

SELECT Capitals.country, capital, currency
FROM Capitals FULL OUTER JOIN CurrencyCodes USING (country);

with

SELECT CurrencyCodes.country, capital, currency
FROM Capitals FULL OUTER JOIN CurrencyCodes USING (country);

January 19th 2023, Lecture 3 TDA357/DIT621

The following queries are equivalent:

o Selects all currencies used in some country:

SELECT code, Currencies.name FROM Currencies
WHERE code IN (SELECT currency FROM Countries);

SELECT code, Currencies.name FROM Currencies
WHERE EXISTS
(SELECT * FROM Countries WHERE currency = code);

o Selects all currencies not used in any country:

SELECT code, Currencies.name FROM Currencies
WHERE code NOT IN (SELECT currency FROM Countries);

SELECT code, Currencies.name FROM Currencies
WHERE NOT EXISTS
(SELECT * FROM Countries WHERE currency = code);

January 19th 2023, Lecture 3 TDA357/DIT621

What is the result of

[SELECT country FROM CurrencyCodes WHERE currency = 'EUR']

[SELECT country FROM CurrencyCodes WHERE currency = currency]

when currency is empty? (has value NULL)

Answer: Neither TRUE or FALSE but UNKNOWN!
UNKNOWN is excluded in conditions and treated as FALSE.

Use “x IS NULL" or “x IS NOT NULL" to check if x is empty or not
(they always give TRUE or FALSE)!

January 19th 2023, Lecture 3 TDA357/DIT621

The truth-table has 9 rows:

| p | q | NOTp | pANDq| pORgq |
TRUE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE FALSE TRUE
TRUE UNKNOWN | FALSE UNKNOWN | TRUE
FALSE TRUE TRUE FALSE TRUE
FALSE FALSE TRUE FALSE FALSE
FALSE UNKNOWN | TRUE FALSE UNKNOWN
UNKNOWN | TRUE UNKNOWN | UNKNOWN | TRUE
UNKNOWN | FALSE UNKNOWN | FALSE UNKNOWN
UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN

In general, good to try to avoid empty values but sometimes they might

be needed.

Recall also that the result of a query could give empty values!

January 19th 2023, Lecture 3

TDA357/DIT621

Even if we do not allow empty values in our tables, the result of a query
can contain empty values (for example with OUTER JOIN).

COALESCE takes a list of values and returns the first non-empty value.

Useful to replace null values with constants of the appropriate type.

SELECT country, COALESCE (capital, 'no capital’),
COALESCE (currency, 'no currency’)
FROM Capitals NATURAL FULL JOIN CurrencyCodes;

We can also give a better name to the column:

SELECT country, COALESCE (capital, 'no capital’) AS capital,
COALESCE (currency, 'no currency’) AS currency
FROM Capitals NATURAL FULL JOIN CurrencyCodes;

January 19th 2023, Lecture 3 TDA357/DIT621

o Foreign keys;
o More about consistency:

o Policies on referencial contraints;
o Assertions;

o Summary of SQL;
o Summary of relational schemas;

o Example.

Reading:
Book: chapter 2, 6.1-6.5 and 7.1-7.4
Notes: chapter 2 and 7.4.1-7.4.3

TDA357/DIT621

