
Databases

TDA357/DIT621– LP3 2023

Lecture 5

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Dureg̊ard)

January 26th 2023



Recall Last Lecture

Foreign keys;

More about consistency:

Policies on referencial contraints;
Assertions;

Summary of SQL;

Summary of relational schemas;

Example.

January 26th 2023, Lecture 5 TDA357/DIT621 1/37



Overview of Today’s Lecture

Entity-relationship (ER) model:

Entities and attributes;
Many-to-many relationships;
Many-to-exactly-one relationships;
Many-to-at-most-one relationships.
Multiway relationships;
Self-relationships;
Weak entities;
ISA relationships;

(ER-example/exercise.)

January 26th 2023, Lecture 5 TDA357/DIT621 2/37



Modelling/Designing the Database

How do we correctly interpret the domain description?

And how do we know which tables to implement? ...

... or what is a good model/design for our database?

Domain descriptions are usually:

Informal;

Ambiguous;

Incomplete;

Given by those who understand the problem but not databases.

We will now take a step back and look into how to
model/design a database from its domain description.

January 26th 2023, Lecture 5 TDA357/DIT621 3/37



Example of a Bad Database Design

Here is a table to keep track of booking in courses:

CourseBookings:

code name day time room seats

TMV028 Automata Monday 10 HB1 108

TDA357 Databases Monday 15 HC4 104

TMV028 Automata Tuesday 13 HB1 108

TDA357 Databases Wednesday 10 HC2 115

TDA357 Databases Thursday 10 HC4 104

... ... ... ... ... ...

What problems can we identify?

Redundancy: Nr. of seats in a room and name of a code is repeated;

Update anomaly: If codes/names/room/seats/... change we might forget
to update all relevant entries;

Delete anomaly: If one removes all the bookings in a room we might loose
the information on its number of seats.

January 26th 2023, Lecture 5 TDA357/DIT621 4/37



A Better Design for this Example

Courses:

code name

TMV028 Automata

TDA357 Databases

... ...

Rooms:

room seats

HB1 108

HC2 115

HC4 104

... ...

Bookings:

code day time room

TMV028 Monday 10 HB1

TDA357 Monday 15 HC4

TMV028 Tuesday 13 HB1

TDA357 Wednesday 10 HC2

TDA357 Thursday 10 HC4

... ... ... ...

Using joins we then obtain the view/information in the previous slide.

Note: How easy will the modelling process be for larger domains?
January 26th 2023, Lecture 5 TDA357/DIT621 5/37



Modelling the Domains

We will look into how to transform the informal domain description into a
formal model of it, which can then easily be translated into a relational
schema and from there to SQL code.

Domain
description
Informal
text

High-level
design
ER-model

Relational
schema

Relational
DBMS
SQL
code

January 26th 2023, Lecture 5 TDA357/DIT621 6/37



Entity-Relationship Model

ER-model was proposed by Peter Chen in 1976.

It is a high-level design consisting of:

Entity sets: The “things” we have information/talk about.

Relationships:

How entities are related to each other, connections
among entities;
Note: relationships vs. relations (tables):

they are NOT the same!

Attributes:

The information we have that will go into the database
tables in the end;
Both entities and relationships can have attributes.
(Attributes are NOT NULL unless otherwise stated.)

January 26th 2023, Lecture 5 TDA357/DIT621 7/37



Entities and their Attributes

Entities are the objects in our domain.

They (in general) exist independently of other entities.

Example: Courses, Rooms, Students, Teachers, Countries, Animals, ...

Properties that every instance of the entity have are called attributes.

Values of these attributes will be stored in a table cell.

They can be numbers, text, ...

... but they are NOT collections of values or “pointers” that refer to
attributes of other entities (they could have the same values as attributes in other

entities though!).

Example: Course’s codes and name, Room’s name and size, Student’s id number, name

and telephone number, Teacher’s name and address, ...
January 26th 2023, Lecture 5 TDA357/DIT621 8/37



ER-diagramas and Schemas for Entities and Attributes

Entities become boxes.

Attributes become elipses. Attributes that are primary keys are underlined.

Courses (code, name, credits)

CourseGrades (student, course, grade)

Note: By convention, entities are named in singular while their relations
in plural.

January 26th 2023, Lecture 5 TDA357/DIT621 9/37



From Domain Description to SQL

Example: Each program has

a name that identifies it.

Programs (name)

CREATE TABLE Programs (
name TEXT PRIMARY KEY );

Example: Each course has a code that

identifies it, a name and a nr of credits.

Courses (code, name, credits)

CREATE TABLE Courses (
code CHAR(6) PRIMARY KEY,
name TEXT NOT NULL,
credits FLOAT NOT NULL );

January 26th 2023, Lecture 5 TDA357/DIT621 10/37



A Simple Many-to-Many Relationship

Example: Every program has a set of courses.

How do we model this? Recall that lists are not attributes!

We introduce a relationship containing pairs <course, program>!

Relationships have diamond shapes in ER-diagrams.

Courses (code, name, credits) CoursesIn (course, program)
course → Courses.code

Programs (name) program → Programs.name

January 26th 2023, Lecture 5 TDA357/DIT621 11/37



Attributes of a Many-to-Many Relationship

Example: Every program has a set of courses. The year in which the
program starts offering the course needs to be remembered.

Courses (code, name, credits) CoursesIn (course, program, year)
course → Courses.code

Programs (name) program → Programs.name

Note: The year is not an attribute of neither a course nor a program but
of the relationship between courses and programs!
January 26th 2023, Lecture 5 TDA357/DIT621 12/37



Many-to-Many Relationships

The primary key of the new relation consists of the (complete)
primary keys of the entities it relates;

None of the (other) attributes of the entities are part of this relation;

The relation itself can have attributes.

Meetings (times, room) Attends (person, mtime, mroom, leaves)
person → Persons.idnr

Persons (idnr, name) (mtime, mroom) → Meetings.(time, room)

January 26th 2023, Lecture 5 TDA357/DIT621 13/37



Many-to-exactly-one Relationships

Example: Each course has (exactly) one teacher as examiner.

Teachers (name, telnr)

Courses (code, name, credits, examiner)
examiner → Teachers.name

January 26th 2023, Lecture 5 TDA357/DIT621 14/37



Attributes of a Many-to-exactly-one Relationships

Compare this:

Courses (code, teacher, year)
teacher → Teachers.name

Teachers (name)

with this:

Courses (code, year, teacher)
teacher → Teachers.name

Teachers (name)

Different diagrams give the same schema!

Many-to-exact-one relationships could (in principle) have attributes but we
need to make sure it is clear how the attributes in the relationship are to
be understood.
January 26th 2023, Lecture 5 TDA357/DIT621 15/37



Many-to-exactly-one Relationships

Observe that:

The round arrow points to the teacher who examines a course;

An arrow in the other direction would say that “each teacher
examines a single/exactly one course”;

In principle, “many” courses could have “exactly the same (one)”
teacher as examiner;

The table/relation for courses has one entry per course;

The “examination” relationship becomes then an attribute of courses:
each course has the/its examiner as attribute.

January 26th 2023, Lecture 5 TDA357/DIT621 16/37



Many-to-at-most-one Relationships

Example: Some teachers have an office/A teacher might have an office.

ER-approach (preferable):

Offices (number)

Teachers (name, telnr)

SitsIn (teacher, office)
teacher → Teachers.name
office → Offices.number

Null approach:

Offices (number)

Teachers (name, telnr, office (or null) )
office → Offices.name

January 26th 2023, Lecture 5 TDA357/DIT621 17/37



Attributes of a Many-to-at-most-one Relationships

Compare this: Offices (number)

Teachers (name, telnr)

SitsIn (teacher, office)
office → Offices.number
teacher → Teachers.name

with this:
Offices (number)

Teachers (name)

SitsIn (teacher, office, place)
office → Offices.number
teacher → Teachers.name

With the ER approach different diagrams give different schemas!

With the null approach we have the same problem as in the
many-to-exactly-one case and maybe more (recall: what if the place is not

empty but the office is?)

January 26th 2023, Lecture 5 TDA357/DIT621 18/37



Many-to-at-most-one Relationships

Observe that:

The pointy arrow points to the possible office of a teacher;

Many teachers could have the same office...

... however some teachers might not have an office;

We can translate this relationship in two different ways:

ER approach: always works!

Null approach: Might not work well when:

The “at-most-one” side has a compound key: what
would it mean if one of the attributes in the key is null?
The relationship has attributes: what will it mean if the
key is empty but not the attribute? One would need to
add a constraint in this case...

January 26th 2023, Lecture 5 TDA357/DIT621 19/37



Summary: Many-to-many/exactly-one/at-most-one Relationships

Many-to-many:
As (a1, a2)
Bs (b1, b2)

AsInBs (a1, b1)
a1 → As.a1
b1 → Bs.b1

Many-to-exactly-one:

As (a1, a2, b1)
b1 → Bs.b1

Bs (b1, b2)

Many-to-at-most-one: As (a1, a2)
Bs (b1, b2)
AsInBs (a1, b1)

(add references!)
Alternative:
As (a1, a2, b1 (or null))
Bs (b1, b2)

January 26th 2023, Lecture 5 TDA357/DIT621 20/37



Multiway Relationships

Relationships can connect more than two entities.

Example: Teachers can have different roles in a course.

Courses (code, name, credits) Lectures (course, teacher, role)

Teachers (name, telnr) course → Courses.code
teacher → Teachers.name

Roles (name) role → Roles.name

Note: Is this really what we wanted?
January 26th 2023, Lecture 5 TDA357/DIT621 21/37



Multiway Relationships (Cont.)

Is this better?

Example: Teachers can have different roles in a course.

Courses (code, name, credits) Lectures (course, teacher, role)

Teachers (name, telnr) course → Courses.code
teacher → Teachers.name

Roles (name) role → Roles.name

Note: Similar to having an attribute in a relationship but with a reference!

January 26th 2023, Lecture 5 TDA357/DIT621 22/37



Multiway Relationships (Cont.)

What about this?

Example: Teachers can have different roles in a course.

Courses (code, name, credits) Lectures (course, teacher, role)

Teachers (name, telnr) course → Courses.code
teacher → Teachers.name

Roles (name) role → Roles.name

Note: Similar to having an attribute in a relationship but with a reference!

January 26th 2023, Lecture 5 TDA357/DIT621 23/37



Multiway Relationships: Some Conclusions

One could have relationships connecting more than two entities but
they are sometimes tricky;

It is important to understand exactly the domain we want to model;

Domain descriptions might be ambiguous, maybe there are separate
relationships instead?

Or would it help to add a few UNIQUE constraints?

Many-to-many-to-many and many-to-many-to-exactly one are easy to
understand.

Other variants are not that easy: try to put different kind of arrows
and give them a meaning!

January 26th 2023, Lecture 5 TDA357/DIT621 24/37



Self-relationships
Many-to-many:

Users (idnr, name)

MessagesTo (sender, receiver)
sender → Users.idnr
receiver → Users.idnr

Many-to-exactly-one:

Employees (idnr, name, boss)
boss → Employees.idnr

Many-to-at-most-one:

Employees (idnr, name)

MentorsOf (mentee, mentor)
mentee → Employees.idnr
mentor → Employees.idnr

January 26th 2023, Lecture 5 TDA357/DIT621 25/37



Self-relationships: Some Observations

There are certain issues of a self-relationship that cannot be expressed
with ER-diagrams:

Can a value be related to itself?

Can a user send a message to him/herself?
Can an employee be his/her own boss?

Can there be cycles?

Can an employee be the boss of his/her own boss?
Can a mentee be the mentor of his/her own mentor?

How to deal with symmetric relationships?
For example when we use self-relationships to model “is a sibling of”.

One could have some “side notes” but it is not always easy to implement
them in SQL.

January 26th 2023, Lecture 5 TDA357/DIT621 26/37



Weak Entities

Example: Departments have research groups; each research group has a
unique name within its department.

Two research groups in different departments could have the same name.

So a research group is a weak entity since it cannot be identify only by its
own attributes; it needs “support” from at least another entity (in this
case departments) for identification!

Departments (code, name)

ResGroups (name, department, topic)
department → Departments.code

Note: Observe the double lines in the weak entity and in its relationship
to the other entity, the round arrow and the dashed line on the weak
entity’s partial key.
January 26th 2023, Lecture 5 TDA357/DIT621 27/37



Weak Entities vs Many-to-exactly-one Relationships

The difference lays on how we translate the key.

Weak entity:

Departments (code, name)

ResGroups (name, department, topic)
department → Departments.code

Many-to-exactly-one
relationship:

Departments (code, name)

ResGroups (name, department, topic)
department → Departments.code

January 26th 2023, Lecture 5 TDA357/DIT621 28/37



Inheritance and Sub-entities: Null Approach

Example: Students are identified by their id number. They have a unique
cid and a name.

Some students are Ph.D. students and they have a date in which they
joined the Ph.D. program.

Some students are master students and they have the name of the master
program they read.

Students (idnr, cid, name,
year (or null),
master (or null))

Unique cid

January 26th 2023, Lecture 5 TDA357/DIT621 29/37



Some Problems with Null Approach

As usually, there are some problem with the null approach:

When a student has null in the year/master name, is this because the
student is not a PhD/mater student or because we forgot to add that
information?

What if neither year nor master name is null? Is the student both a
master and a Phd? Or was it an error?

If the sub-entities would not have extra attributes, how can we
distinguish the different kind of students?

If a sub-entity would have a relationship with another entity
(for example the teacher that supervises a PhD student),
how would this be modelled? A relationship between (all) students
and teachers is not a good solution...

What if the sub-entity has itself a sub-entity?

January 26th 2023, Lecture 5 TDA357/DIT621 30/37



ER Approach: ISA Relationships

A Phd/master student IS A special kind of student.
They have all the attributes of students and a few more.
They have no key on their own, only that of the “super entity”.

Students (idnr, cid, name)
Unique cid

PhdSts (idnr, year)
idnr → Students.idnr

MasterSts (idnr, master)
idnr → Students.idnr

Note: It is possible for a student to be both a PhD and a master student!

January 26th 2023, Lecture 5 TDA357/DIT621 31/37



Making ER-Diagrams

One could use Dia to make the diagrams.

In Tools and Tips under Modules in the Canvas page of the course,
you will find some information on how to install the tool and a video
on how to use it.

January 26th 2023, Lecture 5 TDA357/DIT621 32/37

http://dia-installer.de
https://chalmers.instructure.com/courses/22260


Example/Exercise (from Exam): ER-Model from a Domain

You are making a database for recipes and ingredients. Every recipe
consists of components, like “filling” or “glaze”. Each component has its
own set of ingredients, and an amount for each such ingredient.

Additional features:

Each recipe has its own unique name.
Each component has a name that is unique for the recipe it’s in;
Each recipe has an instruction text;
The database should store the unit of measurement of each ingredient
(e.g. butter is always measured in gram so if a component contains
100 of ingredient “butter”, that means 100 grams);
Some recipes require using an oven, for these recipes one should store
temperature and time;
Ingredients can have any number of alternate ingredients (globally for
all recipes that use that ingredient); there is a conversion factor for
each such alternate, e.g. 1 gram of sugar can be replaced by 3/4
gram of honey (so the factor is 0.75).

January 26th 2023, Lecture 5 TDA357/DIT621 33/37



Example/Exercise: Recipe for Cinnamon buns

Note: Uses an oven at 220 degrees Celsius for 6 minutes.

Components:
Main ingredients: 35 g yeast, 100 g sugar, 3 dl milk, 1 x egg, 120 g

butter, 1 tsp salt, 1 tsp ground cardamom 750 g flour.

Filling: 100 g butter, 50 g sugar, 2 tsp cinnamon.

Glaze: 1 egg, 0.1 dl water, 100 g pearl sugar.

Instructions: Crumble the yeast in a bowl and stir in a few tablespoons of
milk ...

January 26th 2023, Lecture 5 TDA357/DIT621 34/37



Example: ER-Diagram

January 26th 2023, Lecture 5 TDA357/DIT621 35/37



Example: Relational Schema of the ER-Diagram

Recipes (rname, instructions)

OvenRecipes (rname, time, temp)
rname → Recipes.rname

Components (cname, recipe)
recipe → Recipes.rname

Ingredients (iname, unit)

Contains (component, recipe, ingredient, amount)
(component, recipe) → Components.(cname, recipe)
ingredient → Ingredients.iname

Alternate (base, alternate, factor)
base → Ingredients.iname
alternate → Ingredients.iname

January 26th 2023, Lecture 5 TDA357/DIT621 36/37



Overview of Next Lecture

Functional dependencies:

Reflexivity, transitivity and augmentation;
Closures;
Superkeys and keys;
Minimal basis;
Boyce-Codd Normal form (BCNF) ...
... and its normalisation algorithm.

Reading:

Book: chapter 3

Notes: chapters 4.1–4.3 and 5

January 26th 2023, Lecture 5 TDA357/DIT621 37/37


