
Databases

TDA357/DIT621– LP3 2023

Lecture 6

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Dureg̊ard)

January 30th 2023



Recall Last Lecture

Entity-Relationship modelling:

Entities and attributes;

Many-to-many relationships;

Many-to-exactly-one relationships;

Many-to-at-most-one relationships;

Multiway relationships;

Self-relationships;

Weak entities;

ISA relationships;

(ER-example/exercise.)

January 30th 2023, Lecture 6 TDA357/DIT621 1/32



Overview of Today’s Lecture

Functional dependencies:

Reflexivity, transitivity and augmentation;
Closures;
Superkeys and keys;
Minimal basis/cover;

Boyce-Codd Normal form (BCNF) ..

... and its normalisation algorithm.

January 30th 2023, Lecture 6 TDA357/DIT621 2/32



Functional Dependencies and Normal Forms

This is an alternative, and in some way complementary, approach to model
a database.

We start with a domain description and end up with a database schema.

Domain
description

ER model

FD and NF

Relational
Schema

Here we work as follows:

Domain
description

Modelling
Attributes
+ FD Normalisation

Relational
Schema

January 30th 2023, Lecture 6 TDA357/DIT621 3/32



Relations, Relation Schemas and Tables

Recall: A relation S is a subset of the cartesian product of two or more
sets T1,T2, . . . ,Tn:

S ⊆ T1 × T2 × · · · × Tn

Given a relation schema R(a1, . . . , an), consider the domain/type of each
attribute a1 : T1, . . . , an : Tn.

The relation signature of the relation R is the corresponding cartesian
product T1 × · · · × Tn.

So, given a relation schema R(a1, . . . , an) with signature T1 × · · · × Tn:

A table for the schema R(a1, . . . , an) is a subset of the cartesian
product T1 × · · · × Tn;

A row in the table is an element of the cartesian product
t ∈ T1 × · · · × Tn.

January 30th 2023, Lecture 6 TDA357/DIT621 4/32



Attribute Names vs Tuple Components

Recall: The elements of a cartesian product T1 × · · · × Tn are tuples
t = 〈t1, . . . , tn〉.

The ith projection πi t gives us the element ti (of type Ti ).

If t is a row in the table for the schema R(. . . , a, . . .) (containing attribute a),
we will:

Assume an indexing function i giving us the index/position of each
attribute;

Denote t.a = ti(a) the projection πi(a) t;

If A = {a1, . . . , an} is a set of attributes in R(. . .), then
t.A = 〈t.a1, . . . , t.an〉 is the simultaneous projection.

January 30th 2023, Lecture 6 TDA357/DIT621 5/32



Small Example

CREATE TABLE Countries (
name TEXT ...,
abbr CHAR(2) ...,
area FLOAT ... );

Relation schema:
Countries (name, abbr, area)

Relation signature:
TEXT × CHAR(2) × FLOAT

name abbr area

Denmark DK 43094

Sweden SE 449964

Norway NO 324220

... ... ...

Let t = 〈 ’Denmark’, ’DK’, 43094 〉

t.name = ’Denmark’

If A = {abbr, area} then
t.A = 〈 ’DK’, 43094 〉

January 30th 2023, Lecture 6 TDA357/DIT621 6/32



Functional Dependencies (FD)

Let R(a1, . . . , an) be a relation schema, S = {a1, . . . , an} the set of
attributes of R, and X ,A ⊆ S .

Definition: (Functional Dependency) X determines A, denoted X → A,
iff for all rows t, u ∈ R(. . .), if t.X = u.X then t.A = u.A.

Example: Suppose we have a b → c.
What does this mean?

It means that if two rows agree on the values of the attributes a and b, then they should
also agree on the values of the attributes c.

Hence, the values of a and b uniquely determine the values of c.

January 30th 2023, Lecture 6 TDA357/DIT621 7/32



Some Words on Notation

Capital vs small letters: We will use capital letters A, ...,X ,Y ,Z to denote
sets of attributes and small letters a, b, c , ..., z to denote
single attributes (unless otherwise stated).

a→ b c : means that a determines both b and c :

a→ b c is the same as
a→ b
a→ c

a b → c : means that a and b together determine c :

a b → c is NOT the same as
a→ c
b → c

January 30th 2023, Lecture 6 TDA357/DIT621 8/32



Properties of Functional Dependencies

Let R(a1, . . . , an) be a relation schema, S = {a1, . . . , an} the set of
attributes of R, and X ,Y ,Z ,A ⊆ S .

Transitivity: If X → Y and Y → Z then X → Z ;

Augmentation: If X → A and a is an attribute, then X a→ A and
a X → A;

Reflexivity: (trivial dependency) X → X ;

Reflexivity + augmentation (trivial dependency) If Y ⊆ X then X → Y .

Closure: X+ = {a |X → a}, the set of all attributes determined by X ;

Superkey: X such that S ⊆ X+;
(X is a superkey if X+ includes all the attributes in R(. . .))

(Minimal) Key: Minimal superkey (and good candidate for primary key!);
removing an attribute to the set will make it a non-superkey.

January 30th 2023, Lecture 6 TDA357/DIT621 9/32



Example: Deriving FD

Given the FD:
x → y
z → w
y w → q

we can derive the FD: x z → q

x z → y : from x → y by augmentation;

x z → w : from z → w by augmentation;

x z → y w : by merging left-hand side of FD (see words on notation);

x z → q: by transitivity of x z → y w and y w → q.

January 30th 2023, Lecture 6 TDA357/DIT621 10/32



Example: Computing the Closure

Given the FD:

x → y
z → w
y w → q
q → x
r → s

compute: {x , z}+

{x , z} ⊆ {x , z}+: we start from trivial FD;

{x , z , y} ⊆ {x , z}+: we add y because x → y ;

{x , z , y ,w} ⊆ {x , z}+: we add w because z → w ;

{x , z , y ,w , q} ⊆ {x , z}+: we add q because y w → q;

{x , z , y ,w , q} = {x , z}+: nothing else to add.

The closure gives us the non-trivial FD:
(Recall: if Y ⊆ X then X → Y trivial)

x z → y
x z → w
x z → q

or x z → y w q

January 30th 2023, Lecture 6 TDA357/DIT621 11/32



Uses of Functional Dependencies

There are three ways we can use functional dependencies:

Check if they hold for a specific data set;

Check if a specific design/relational schema ensures the FD hold for
all data set that follows the schema;

Express desired properties a design/relational schema should have.

(This use is what makes FD a design tool, and what we will concentrate on in

(most of) the rest of this lecture.)

January 30th 2023, Lecture 6 TDA357/DIT621 12/32



Example: Which FD Hold for this Data?

code name day time room seats

TMV028 Automata Monday 10 HB1 108

TDA357 Databases Monday 15 HC4 104

TMV028 Automata Tuesday 13 HB1 108

TDA357 Databases Wednesday 10 HC2 115

TDA357 Databases Thursday 10 HC4 104

code → name: YES

day → time: NO

day time room → code: YES

room → seats: YES

code name day → time room seats: YES

January 30th 2023, Lecture 6 TDA357/DIT621 13/32



Example: Which FD Hold for this Design?

Teachers (name, email)
Courses (code, cname, teacher)

teacher → Teachers.name

Does the relational schema guarantee:

code → cname: YES

cname → code: NO

code cname → teacher: YES

code teacher → email: YES

January 30th 2023, Lecture 6 TDA357/DIT621 14/32



Example: Deriving Closures, Keys and Superkeys (I)

Relation schema:
Countries (country, capital, currency)

Functional dependencies:

country → capital
country → currency

Closures:

{country}+ = {country, capital, currency}
{capital}+ = {capital}
{currency}+ = {currency}

Superkeys:

{country}, {country, capital}, {country, currency},
{country, capital, currency}

Key:
{country}

January 30th 2023, Lecture 6 TDA357/DIT621 15/32



Example: Deriving Closures, Keys and Superkeys (II)

Relation schema:
Countries (country, capital, currency)

Functional dependencies:

country → capital
country → currency
capital → country
(by transitivity: capital → currency)

Closures:

{country}+ = {country, capital, currency}
{capital}+ = {capital, country, currency}
{currency}+ = {currency}

Superkeys:

{country}, {capital}, {country, capital}, {country, currency},
{capital, currency}, {country, capital, currency}

Key:
{country}, {capital}

January 30th 2023, Lecture 6 TDA357/DIT621 16/32



Example: Deriving Closures, Keys and Superkeys (III)

Relation schema:
Countries (country, currency, value)

Functional dependencies:

country → currency
currency → value
(by transitivity: country → value)

Closures:

{country}+ = {country, currency, value}
{currency}+ = {currency, value}
{value}+ = {value}

Superkeys:

{country}, {country, currency}, {country, value},
{country, currency, value}

Key:
{country}

January 30th 2023, Lecture 6 TDA357/DIT621 17/32



Example: Deriving Closure, Keys and Superkeys (III, Cont.)

If country is the primary key, then the dependency

country → currency

will be trivially satisfied.

But how to ensure that

currency → value

is satisfied?
This is a non-trivial FD and {currency, value} is not a superkey!

Note: FD help us identify a problematic schema!

January 30th 2023, Lecture 6 TDA357/DIT621 18/32



Minimal Basis/Cover F−

Let F be a set of functional dependencies.

Definition: The minimal basis or minimal cover F− is a simplified but
equivalent set of functional dependencies such that:

F− contains no trivial dependencies (if Y ⊆ X then X → Y trivial);

No dependencies in F− follow from other dependencies in F−

through transitivity or augmentations.

January 30th 2023, Lecture 6 TDA357/DIT621 19/32



Example: Deriving Minimal Basis/Cover

Given the FD:
a→ b
b → c
a d → b c d

we can compute the minimal basis by removing:

a d → d : because it is trivial;

a d → b: because it can be computed from a→ b by augmentation;

a d → c : because it can be computed from a→ b and b → c by
transitivity, and then augmentation.

Minimal basis/cover:
a→ b
b → c

January 30th 2023, Lecture 6 TDA357/DIT621 20/32



Deriving Minimal Basis/Cover

A way to see if a FD X → Y can be derived from the other FD is to check
whether X+ is a superkey when X → Y is not taken into account.

Example: Consider the FD:
a→ b
b c → d
a c → d

Is a c → d derived?

Let us compute {a, c}+ from
a→ b
b c → d

{a, c}+ = {a, b, c , d}

That is, {a, c}+ is a superkey and hence it should be possible to derived
a c → d from the other FD.

January 30th 2023, Lecture 6 TDA357/DIT621 21/32



Minimal basis/cover: is F− ⊆ F?

Given a set F of FD, the minimal basis/cover F− does not have to be a
subset of F .

Consider the FD:
a c → b
a→ c

Minimal basis/cover:
a→ b
a→ c

since a → c, then a c → b can actu-

ally be derived from a→ b by

augmentation.

Otherwise a c → b might hold but

not a→ b!

The minimal basis is not included in the original set of FD.

January 30th 2023, Lecture 6 TDA357/DIT621 22/32



FD: Summary so Far

A FD X → Y means that any rows that agree on X also agree on Y ;

We can extend a set of FD with additional derived FD using
transitivity, augmentation, and reflexivity;

Conversely, we can reduce a set of FD to its minimal basis/cover by
removing all trivial and derived FD;

The closure X+ is the set of all attributes that can be determined
by X ;

A superkey is a set of attributes that determines all others in the
relation;

Keys are minimal superkeys;

To find a key: start with all attributes (a trivial superkey) and remove
attributes until it is a key (finding all keys is more work though).

January 30th 2023, Lecture 6 TDA357/DIT621 23/32



Normal Forms and Normalisation

We work like this:

We start by collecting all the attributes in the domain and place them
in one big relation schema R(a1, ..., an);
We collect the set F with all the FD;
(We compute the minimal basis/cover F−;)

We normalise R(. . .) using F (alt. F−) to get a good design.

Normalisation is a recursive procedure.
To normalise R(. . .):

We check if R(. . .) is already in normal form;
If not, we decompose R(. . .) into R1(. . .) and R2(. . .) and normalise
them.

There are several normal form definitions ...

... and several normalisation algorithms (depending on the normal
form definitions).

January 30th 2023, Lecture 6 TDA357/DIT621 24/32



BCNF (Boyce-Codd Normal Form) and BCNF-violation

Definition: Given a relation schema R(a1, ..., an),
the non-trivial FD X → Y (with X ⊆ {a1, ..., an})
is a BCNF-violation if X is not a superkey ({a1, ..., an} 6⊆ X+).

Definition: A relation schema R(a1, ..., an) is in BCNF if for each
non-trivial FD X → Y , X is a superkey (X ⊆ {a1, ..., an} ⊆ X+).

That is, if there are no BCNF-violations.

January 30th 2023, Lecture 6 TDA357/DIT621 25/32



BCNF Normalisation Algorithm

To normalise a relation schema R(S) with S = {a1, ..., an}:

Find a BCNF-violation: that is, a non-trivial FD X → Y such that X
is not a superkey (X ⊆ S 6⊆ X+);

If there is no such FD then R is already in BCNF;

Otherwise decompose R(S) into R1(X+) and R2(X ∪ (S − X+)) and
normalise them both.

Note: R(S) is of no interest anymore and has been replaced by R1(S1) and R2(S2)!

January 30th 2023, Lecture 6 TDA357/DIT621 26/32



Example: BCNF Normalisation

Given
the FD:

code → name
room → seats
day time code → room
day time room → code

normalise R(code, name, day, time, room, seats)

Decompose using code → name?
X = {code}, X+ = {code}+ = {code, name}

R1(X+) = R1(code, name) (in BCNF!)

R2(X ∪ (S − X+)) = R2(code, day, time, room, seats)

Decompose using room → seats?
X = {room}, X+ = {room}+ = {room, seats}

R21(X+) = R21(room, seats) (in BCNF!)

R22(X ∪ (S − X+)) = R22(code, day, time, room)

January 30th 2023, Lecture 6 TDA357/DIT621 27/32



Example: BCNF Normalisation (Cont.)

Can R22(code, day, time, room) be decomposed further?

We look at the remaining FD:

Decompose using day time room → code?
X = {day, time, room}
X+ = {day, time, room}+ = {day, time, room, code, seats}

Decompose using day time code → room?
X = {day, time, code}
X+ = {day, time, code}+ = {day, time, room, code, name}

So R22(code, day, time, room) is in BCNF!

Both {day, time, room} and {day, time, code} are keys!
January 30th 2023, Lecture 6 TDA357/DIT621 28/32



Identifying the Keys, Uniqueness Constrains and References

FD:

code → name
room → seats
day time code → room
day time room → code

Relational
Schema:

R1(code, name)
R21(room, seats)
R22(code, day, time, room)

Keys can be determined using the FD and the normalisation algorithm.
(A (minimal) X that determines all the attributes in the relation schema is a key!)

We get 2 possible solutions:

R1(code, name)
R21(room, seats)
R22(code, day, time, room)

code → R1.code
room → R21.room
Unique (day, time, room)

R1(code, name)
R21(room, seats)
R22(code, day, time, room)

code → R1.code
room → R21.room
Unique (day, time, code)

Note: We need to keep track of the splitting for the references!

January 30th 2023, Lecture 6 TDA357/DIT621 29/32



BCNF Decomposition Avoids Data Redundancy (based on FD)

R: CourseBookings

code name day time room seats

TMV028 Automata Monday 10 HB1 108

TDA357 Databases Monday 15 HC4 104

TMV028 Automata Tuesday 13 HB1 108

TDA357 Databases Wednesday 10 HC2 115

TDA357 Databases Thursday 10 HC4 104

R1: Courses

code name

TMV028 Automata

TDA357 Databases

R21: Rooms

room seats

HB1 108

HC2 115

HC4 104

R22: Bookings

code day time room

TMV028 Monday 10 HB1

TDA357 Monday 15 HC4

TMV028 Tuesday 13 HB1

TDA357 Wednesday 10 HC2

TDA357 Thursday 10 HC4

January 30th 2023, Lecture 6 TDA357/DIT621 30/32



Lossless Join: All Data Back!

R1: Courses

code name

TMV028 Automata

TDA357 Databases

R21: Rooms

room seats

HB1 108

HC2 115

HC4 104

R22: Bookings

code day time room

TMV028 Monday 10 HB1

TDA357 Monday 15 HC4

TMV028 Tuesday 13 HB1

TDA357 Wednesday 10 HC2

TDA357 Thursday 10 HC4

Query: R1 NATURAL JOIN R21 NATURAL JOIN R22

code name day time room seats

TMV028 Automata Monday 10 HB1 108

TDA357 Databases Monday 15 HC4 104

TMV028 Automata Tuesday 13 HB1 108

TDA357 Databases Wednesday 10 HC2 115

TDA357 Databases Thursday 10 HC4 104

January 30th 2023, Lecture 6 TDA357/DIT621 31/32



Overview of Next Lecture

FD examples;

BCNF decomposition and dependency preservation;

Multivalued dependencies (MVD);

4NF and its normalisation algorithm;

MVD examples.

Reading:

Book: chapter 3

Notes: chapters 4.1–4.3 and 5

January 30th 2023, Lecture 6 TDA357/DIT621 32/32


