Lecture 6

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Duregérd)

January 30th 2023

o Entity-Relationship modelling:
o Entities and attributes;
o Many-to-many relationships;
o Many-to-exactly-one relationships;
o Many-to-at-most-one relationships;
o Multiway relationships;
o Self-relationships;
o Weak entities;
o ISA relationships;

o (ER-example/exercise.)

TDA357/DIT621

o Functional dependencies:

o Reflexivity, transitivity and augmentation;
o Closures;

o Superkeys and keys;

o Minimal basis/cover;

o Boyce-Codd Normal form (BCNF) ..

@ ... and its normalisation algorithm.

January 30th 20 6 TDA357/DIT621

This is an alternative, and in some way complementary, approach to model
a database.

We start with a domain description and end up with a database schema.

’ ER model ’

Domain Relational
description Schema

’ FD and NF

Here we work as follows:

Domain Attributes Relational
description + FD Schema

January 30th 2023, Lecture 6 TDA357/DIT621

Recall: A relation S is a subset of the cartesian product of two or more
sets T1, To,..., Th:
SCTixTryx---xT,

Given a relation schema R(as, ..., a,), consider the domain/type of each
attribute a1 : T1,...,a,: Th.

The relation signature of the relation R is the corresponding cartesian
product T1 X --- x Tp.

So, given a relation schema R(ay, ..., a,) with signature T3 X -+ x Tp:

o A table for the schema R(ai,...,ap) is a subset of the cartesian
product Ty X --- x Tp;

o A row in the table is an element of the cartesian product
te Ty x---x T,

TDA357/DIT621

Recall: The elements of a cartesian product T; X --- X T, are tuples
t=(t1,...,tn)-

The ith projection ; t gives us the element t; (of type T;).

If t is a row in the table for the schema R(...,a,...) (containing attribute a),
we will:

o Assume an indexing function i giving us the index/position of each
attribute;

o Denote t.a = tj(,) the projection mj(,) t;

o If A={a1,...,ap} is a set of attributes in R(...), then
t.A= (t.a,...,t.a,) is the simultaneous projection.

TDA357/DIT621

Relation schema:
Countries (name, abbr, area)

CREATE TABLE Countries (
name TEXT ...,
abbr CHAR(2) ...,

area FLOAT ...); Relation signature:

TEXT x CHAR(2) x FLOAT

| name | abbr | area | Let t = ('Denmark’, 'DK’, 43094)

Denmark | DK 43094
Sweden SE 449964
Norway NO 324220

t.name = 'Denmark’

If A= {abbr, area} then
t. A= ('DK’, 43004)

January 30th 2023, Lecture 6 TDA357/DIT621

Let R(a1,...,an) be a relation schema, S = {ai,...,a,} the set of
attributes of R, and X,AC S.

Definition: (Functional Dependency) X determines A, denoted X — A,
iff for all rows t,u € R(...), if t.X = u.X then t.A= u.A.

Example: Suppose we have ab — c.
What does this mean?

It means that if two rows agree on the values of the attributes a and b, then they should
also agree on the values of the attributes c.

Hence, the values of a and b uniquely determine the values of c.

January 30th 2023, ire 6 TDA357/DIT621

Capital vs small letters: We will use capital letters A, ..., X, Y, Z to denote
sets of attributes and small letters a, b, c, ..., z to denote
single attributes (unless otherwise stated).

a — bc: means that a determines both b and c:

s th e
a—>bc IS The same as PRI

ab — ¢ means that a and b together determine c:

. a—C
is NOT the same as b c

January 30t ire 6 TDA357/DIT621

Let R(a1,...,an) be a relation schema, S = {ai,...,a,} the set of
attributes of R, and X,Y,Z,ACS.

Transitivity: If X — Y and Y — Z then X — Z;

Augmentation: If X — A and a is an attribute, then X a — A and
aX — A

Reflexivity: (trivial dependency) X — X;
Reflexivity + augmentation (trivial dependency) If Y C X then X — Y.
Closure: X = {a| X — a}, the set of all attributes determined by X

Superkey: X such that S C X™;
(X is a superkey if X* includes all the attributes in R(...))

(Minimal) Key: Minimal superkey (and good candidate for primary key!);
removing an attribute to the set will make it a non-superkey.

TDA357/DIT621

X =Yy
Given the FD: z—=w

yw—gq
we can derive the FD: Xz —q

o xz — y: from x — y by augmentation;
o xz — w: from z — w by augmentation;
@ xz — y w: by merging left-hand side of FD (see words on notation);

@ xz — q: by transitivity of xz — yw and y w — q.

January 30t TDA357/DIT621

Xy
zZ— W

Given the FD: yw—gq compute:
q— x
r—s

{x,z} C {x,z}": we start from trivial FD;

{x,z,y} C {x,z}": we add y because x — y;
{x,z,y,w} C {x,z}*: we add w because z — w;
{x,z,y,w,q} C {x,z}": we add g because y w — q;
{x,z,y,w,q} = {x,z}": nothing else to add.

Xz—=y

The closure gives us the non-trivial FD:
| e

(Recall: if Y C X then X — Y trivial) Xz g

January 30th 2023, ire 6 TDA357/DIT621

There are three ways we can use functional dependencies:

o Check if they hold for a specific data set;

o Check if a specific design/relational schema ensures the FD hold for
all data set that follows the schema;

o Express desired properties a design/relational schema should have.

(This use is what makes FD a design tool, and what we will concentrate on in

(most of) the rest of this lecture.)

January 30t ire 6 TDA357/DIT621

| code | name | day | time | room | seats |
TMV028 | Automata | Monday 10 HB1 108
TDA357 | Databases | Monday 15 HC4 104
TMV028 | Automata | Tuesday 13 HB1 108
TDA357 | Databases | Wednesday | 10 HC2 115
TDA357 | Databases | Thursday 10 HC4 104

code — name: WYES

day — time:

day time room — code: YES

room — seats: YES

code name day — time room seats: YES

January 30th 2023, ire 6 TDA357/DIT621

Teachers (name, email)
Courses (code, cname, teacher)
teacher — Teachers.name

Does the relational schema guarantee:

code — cname: WYES

cname — code:
code cname — teacher:

code teacher — email:

January 30t

YES

TDA357/DIT621

[Countries (country, capital, currency)]

Relation schema:

country — capital
country — currency

Functional dependencies:

{country}" = {country, capital, currency}
{capital}" = {capital}
{currency}* = {currency}
Closures:
{country}, {country, capital}, {country, currency},
S — {country, capital, currency}

Key:

January 30th 2023, Lecture 6 TDA357/DIT621

[Countries (country, capital, currency)]

Relation schema:

country — capital

country — currency

capital — country

(by transitivity: capital — currency)

Functional dependencies:

{country}™ = {country, capital, currency}
{capital}t = {capital, country, currency}
Closures: {currency}t = {currency}
{country}, {capital}, {country, capital}, {country, currency},
S K {capital, currency}, {country, capital, currency}
uperkeys:

K [{country}, {capital}]

January 30th 2023, Lecture 6 TDA357/DIT621

Relation schema:

Functional dependencies:

Closures:

Superkeys:

Key

January 30t Lecture 6

[Countries (country, currency, value)]

country — currency
currency — value
(by transitivity: country — value)

{country}™ = {country, currency, value}
{currency}* = {currency, value}
{value}* = {value}

{country}, {country, currency}, {country, value},
{country, currency, value}

If country is the primary key, then the dependency

[country — currency]

will be trivially satisfied.

But how to ensure that

[cu rrency — value]

is satisfied?
This is a non-trivial FD and {currency, value} is not a superkey!

Note: FD help us identify a problematic schemal!

January 30th 2023, ire 6 TDA357/DIT621

Let F be a set of functional dependencies.

Definition: The minimal basis or minimal cover F~ is a simplified but
equivalent set of functional dependencies such that:

o F~ contains no trivial dependencies (if Y C X then X — Y trivial);

o No dependencies in F~ follow from other dependencies in F~
through transitivity or augmentations.

January 30t ire 6 TDA357/DIT621

a—b

Given the FD: b—c
ad —> bcd

we can compute the minimal basis by removing:

o ad — d: because it is trivial;
o ad — b: because it can be computed from a — b by augmentation;

@ ad — c: because it can be computed from a — b and b — ¢ by
transitivity, and then augmentation.

a—b

Minimal basis/cover:
b—c

January 30th 2023, ire 6 TDA357/DIT621

A way to see if a FD X — Y can be derived from the other FD is to check
whether X is a superkey when X — Y is not taken into account.

a—b
Example: Consider the FD: bc—d
ac—d
Is ac — d derived?
+ a—b
Let us compute {a, c}* from be— d

{a,c}™ ={a,b,c,d}

That is, {a,c} T is a superkey and hence it should be possible to derived
ac — d from the other FD.

TDA357/DIT621

Given a set F of FD, the minimal basis/cover F~ does not have to be a
subset of F.

. ac—b
Consider the FD: PR
since a — ¢, then ac — b can actu-
ally be derived from a — b by
Minimal basis/cover: a—b augmentation
a—c '

Otherwise ac — b might hold but
not a — b!

The minimal basis is not included in the original set of FD.

TDA357/DIT621

o A FD X — Y means that any rows that agree on X also agree on Y,

o We can extend a set of FD with additional derived FD using
transitivity, augmentation, and reflexivity;

o Conversely, we can reduce a set of FD to its minimal basis/cover by
removing all trivial and derived FD;

o The closure X is the set of all attributes that can be determined
by X;

o A superkey is a set of attributes that determines all others in the
relation;

o Keys are minimal superkeys;

o To find a key: start with all attributes (a trivial superkey) and remove
attributes until it is a key (finding all keys is more work though).

January 30th 2023, Lecture 6 TDA357/DIT621

o We work like this:
o We start by collecting all the attributes in the domain and place them
in one big relation schema R(ax, ..., an);
o We collect the set F with all the FD;
o (We compute the minimal basis/cover F™;)
o We normalise R(...) using F (alt. F~) to get a good design.

o Normalisation is a recursive procedure.
To normalise R(...):
o We check if R(...) is already in normal form;
o If not, we decompose R(...) into Ry(...) and Rx(...) and normalise

them.

o There are several normal form definitions ...

o ... and several normalisation algorithms (depending on the normal
form definitions).

January 30th 2023, Lecture 6 TDA357/DIT621

Definition: Given a relation schema R(a, ..., ap),
the non-trivial FD X — Y (with X C {a1, ..., a,})
is a BCNF-violation if X is not a superkey ({ai1,...,a,} Z XT).

Definition: A relation schema R(az, ..., ap) is in BCNF if for each
non-trivial FD X — Y, X is a superkey (X C {a1,...,a,} € X 7).

That is, if there are no BCNF-violations.

TDA357/DIT621

To normalise a relation schema R(S) with S = {a1, ..., an}:

o Find a BCNF-violation: that is, a non-trivial FD X — Y such that X
is not a superkey (X €S ¢Z X");

o If there is no such FD then R is already in BCNF;

o Otherwise decompose R(S) into Ry(X™) and Ry(X U (S — X™)) and
normalise them both.

Note: R(S) is of no interest anymore and has been replaced by Ri(S1) and Rx(S2)!

January 30th 2023, Lecture 6 TDA357/DIT621

code — name
Given room — seats
the FD: | day time code — room
day time room — code

normalise [R(code, name, day, time, room, seats)]

Decompose using code — name?
X = {code}, XT = {code}™ = {code, name}

Ri(X*) = (in BCNF!)

Ry(X U (S — X+)) = Ry(code, day, time, room, seats)

Decompose using room — seats?
X = {room}, XT = {room}* = {room, seats}

Roy(X+) = (in BCNF!)

Ra2(X U (S — XT)) = Raz(code, day, time, room)

January 30th 2023, Lecture 6 TDA357/DIT621

Can Ryy(code, day, time, room) be decomposed further?

We look at the remaining FD:

Decompose using day time room — code?
X = {day, time, room}
XT = {day, time, room} T = {day, time, room, code, seats}

Decompose using day time code — room?
X = {day, time, code}
XT = {day, time, code}™ = {day, time, room, code, name}

So [Rzg(code, day, time, room)] is in BCNF!

Both {day, time, room} and {day, time, code} are keys!

TDA357/DIT621

code — name
room — seats Relational
day time code — room Schema:

day time room — code

Ri(code, name)
R1(room, seats)
Ry (code, day, time, room)

FD:

Keys can be determined using the FD and the normalisation algorithm.

(A (minimal) X that determines all the attributes in the relation schema is a key!)

We get 2 possible solutions:

Ri(code, name) Ri(code, name)

R»1(room, seats) R>1(room, seats)

Ry (code, day, time, room) Rx:(code, day, time, room)
code — Ri.code code — Ry.code
room — R»i.room room — R»;.room
Unique (day, time, room) Unique (day, time, code)

Note: We need to keep track of the splitting for the references!

January 30th 2023, Lecture 6 TDA357/DIT621

R: CourseBookings

| code | name | day | time | room | seats |
TMV028 | Automata | Monday 10 HB1 108
TDA357 | Databases | Monday 15 HC4 104

TMV028 | Automata | Tuesday 13 HB1 108
TDA357 | Databases | Wednesday | 10 HC2 115
TDA357 | Databases | Thursday 10 HC4 104

\ 4

Ry1: Courses R>1: Rooms R>>: Bookings
| code | name []| room | seats ||| code | day | time | room |
TMV028 | Automata HB1 108 TMV028 | Monday 10 HB1
TDA357 | Databases HC2 115 TDA357 | Monday 15 HC4
HC4 104 TMV028 | Tuesday 13 HB1
TDA357 | Wednesday | 10 HC2
TDA357 | Thursday 10 HC4

January 30th 2023, Lecture 6 TDA357/DIT621

R1: Courses R>1: Rooms R>>: Bookings
| code | name ||| room | seats ||I| code | day | time | room |
TMV028 | Automata HB1 108 TMV028 | Monday 10 HB1
TDA357 | Databases HC2 115 TDA357 | Monday 15 HC4
HC4 104 TMV028 | Tuesday 13 HB1
TDA357 | Wednesday | 10 HC2
TDA357 | Thursday 10 HC4
(Query: Ri NATURAL JOIN Ry: NATURAL JOIN Ry)
| code | name | day | time | room | seats |
TMV028 | Automata | Monday 10 HB1 108
TDA357 | Databases | Monday 15 HC4 104
TMV028 | Automata | Tuesday 13 HB1 108
TDA357 | Databases | Wednesday | 10 HC2 115
TDA357 | Databases | Thursday 10 HC4 104

January 30th 2023, Lecture 6

TDA357/DIT621

o FD examples;

o BCNF decomposition and dependency preservation;
o Multivalued dependencies (MVD);

o 4NF and its normalisation algorithm;

o MVD examples.

Reading:
Book: chapter 3
Notes: chapters 4.1-4.3 and 5

TDA357/DIT621

