
Databases

TDA357/DIT621– LP3 2023

Lecture 8

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Dureg̊ard)

February 6th 2023

Recall Last 2 Lectures

Functional dependencies:

X → Y : if two rows agree on the values of X then they must agree on
the values of Y ;

R(S) in BCNF if for all non-trivial X → Y (Y 6⊆ X), X is a superkey;

Normalisation algorithm: given R(S) and a BCNF-violation X → Y ,
we split R(S) into R1(X+) and R2(X ∪ (S − X+)) and recursively
normalise.

Multivalued functional dependencies:

X � Y : if we have tuples 〈x , y1, z1〉 and 〈x , y2, z2〉, then we also have
tuples 〈x , y1, z2〉 and 〈x , y2, z1〉;
R(S) in 4NF if in BCNF and for all non-trivial X � Y
(Y 6⊆ X or S 6⊆ X ∪ Y) , X is a superkey;

Normalisation algorithm: given R(S) and a 4NF-violation X � Y , we
split R(S) into R1(X ∪ Y) and R2(S − Y) and recursively normalise.

February 6th 2023, Lecture 8 TDA357/DIT621 1/27

Overview of Today’s Lecture

Functions;

Triggers:

On tables;
On views;

Example.

February 6th 2023, Lecture 8 TDA357/DIT621 2/27

Function Definitions

Users can create functions to be used like other SQL functions
(see documentation).

CREATE FUNCTION name (parameters) RETURNS type AS $$
< function code in here >

$$ LANGUAGE language ;

CREATE OR REPLACE FUNCTION name (parameters) RETURNS type AS $$
< function code in here >

$$ LANGUAGE language ;

Possible languages:

SQL: pure SQL statements;

plpgsql: PL/pgSQL - SQL Procedural Language
(programs are sequence of instructions).

February 6th 2023, Lecture 8 TDA357/DIT621 3/27

https://www.postgresql.org/docs/15/sql-createfunction.html
https://www.postgresql.org/docs/15/plpgsql.html

Example: Function Definitions

Tables:

CREATE TABLE CourseRegistrations (
student CHAR(10) REFERENCES ...,
course CHAR(6) REFERENCES ...,
position INT CHECK (position > 0),
PRIMARY KEY (student, course));

Functions:

CREATE OR REPLACE FUNCTION nextPos (CHAR(6)) RETURNS INT AS $$
SELECT COUNT(*) + 1 FROM CourseRegistrations WHERE course = $1

$$ LANGUAGE SQL;

Using the functions:

INSERT INTO CourseRegistrations
VALUES (’1234567890’, ’TDA357’, nextPos (’TDA357’));

SELECT nextPos (’TDA357’) AS NextPosition;

SELECT DISTINCT course, nextPos (course) FROM CourseRegistrations;

February 6th 2023, Lecture 8 TDA357/DIT621 4/27

Example: Alternative Function Definition

PL/pgSQL is a procedural language and it gives us other possibilities when
writing functions (more about functions in PL/pgSQL is coming!).

The function needs to end with a RETURN statement.

CREATE OR REPLACE FUNCTION nextPos (CHAR(6)) RETURNS INT AS $$
DECLARE

pos INT;
BEGIN

pos := (SELECT COUNT(*) FROM CourseRegistrations WHERE course = $1);
RETURN (pos+1);

END
$$ LANGUAGE plpgsql;

The function is however used in the same way.

February 6th 2023, Lecture 8 TDA357/DIT621 5/27

https://www.postgresql.org/docs/15/plpgsql.html
https://www.postgresql.org/docs/15/plpgsql.html

Variable Declaration and Assignment in PL/pgSQL

CREATE OR REPLACE FUNCTION my function () RETURNS TRIGGER AS $$

DECLARE
my balance INT;
total INT;
my text TEXT;
. . .

BEGIN
. . .
SELECT balance INTO my balance FROM Accounts WHERE id = ’123456’;
. . .
total := (SELECT SUM(balance) FROM Accounts);
. . .
my text := ’Here I write my text’;
. . .

END;

$$ LANGUAGE plpgsql;

Check documentation to see what happens if the query returns none /
multiple rows: raises an error/ gives NULL/returns first row/...
February 6th 2023, Lecture 8 TDA357/DIT621 6/27

https://www.postgresql.org/docs/15/plpgsql.html
https://www.postgresql.org/docs/15/sql-createfunction.html

Conditionals in PL/pgSQL

IF <condition> THEN
. . . ;

ELSEIF <condition> THEN
. . . ;

ELSE
. . . ;

END IF;

ELSEIF and ELSE parts are optional;

When the condition returns UNKNOWN, the ELSE part will be run;

Useful condition to see if the query returns at least one element:

IF (EXISTS (SELECT ...)) THEN
. . . ;

... ;

February 6th 2023, Lecture 8 TDA357/DIT621 7/27

https://www.postgresql.org/docs/15/plpgsql.html

Case Analysis in PL/pgSQL

CASE <expression>
WHEN <value> THEN ... ;
WHEN <value> THEN ... ;
WHEN <value> THEN ... ;
. . . ;
ELSE . . . ;

END CASE;

CASE
WHEN <condition> THEN ... ;
WHEN <condition> THEN ... ;
WHEN <condition> THEN ... ;
. . . ;
ELSE . . . ;

END CASE;

At least one WHEN ... THEN ... is needed;

ELSE is optional.
February 6th 2023, Lecture 8 TDA357/DIT621 8/27

https://www.postgresql.org/docs/15/plpgsql.html

More PL/pgSQL Features

Loops:

LOOP EXIT WHEN <condition>;
<code of the loop>

END LOOP;

Exceptions:

BEGIN
<code that may cause an exception>

EXCEPTION
WHEN <error code>
<code that handles the exception>

END;

Check documention for error codes.

February 6th 2023, Lecture 8 TDA357/DIT621 9/27

https://www.postgresql.org/docs/15/plpgsql.html
https://www.postgresql.org/docs/15/errcodes-appendix.html

Using Functions in SQL

Using functions in this way when inserting values helps having the right
position in a course but we are still not safe.

It will work as expected only if the table is consistent from the start ...

... and when both codes match in the insert clause;

Deleting a row will create “holes” and next time we use the function
it might create collisions;

One could use MAX instead of COUNT to avoid collisions ...

... but it is still possible to insert values without using the function;

Recall assertions do not work in PostgeSQL!

February 6th 2023, Lecture 8 TDA357/DIT621 10/27

https://www.postgresql.org

Triggers

Triggers are procedures executed when certain actions take place
(like updating, inserting or deleting from a table).

Triggers are useful when “something” is supposed to happen when “some
other action” is performed, or when we need to ensure
constraints/invariants across tables.

Example: If a student passed the missing pre-requisite for a certain course, then the

student is not longer conditionally accepted to the course but gets a normal registration.

We then need to:

Define the functions associated to the triggers;

Specify which function the trigger calls and how.

February 6th 2023, Lecture 8 TDA357/DIT621 11/27

All or Nothing Semantics

All SQL statements are atomic, even if they affect several rows: if there is
an error no rows will be changed!

Constraints can prevent an INSERT or UPDATE from completing.

Also, intermediate changes are never visible to other users of the database.

Example: An electrical power problem in the middle of a money transaction should

leave both accounts unchanged.

This includes trigger functions: if a trigger function fails, nothing is
changed in the database!

(SQL statements can be grouped into larger transactions – will discuss them in a later

lecture.)

February 6th 2023, Lecture 8 TDA357/DIT621 12/27

Defining Functions to Be Used in Triggers

The return type should then be TRIGGER and the language plpgsql;

CREATE FUNCTION name (parameters) RETURNS TRIGGER AS $$
< function code in here >

$$ LANGUAGE plpgsql;

The function needs to end with a RETURN statement (see slide 17);

Raise an exception to prevent the trigger to do changes in the
database if something is wrong (recall atomic actions!):

RAISE EXCEPTION ’simple error message’;

RAISE EXCEPTION ’error message with more info %’, error text;

Output message if needed (useful for debugging):

RAISE NOTICE ’simple info message’;

RAISE NOTICE ’info message with more info %’, error text;

See documentation on errors and messages in PostgeSQL manual.
February 6th 2023, Lecture 8 TDA357/DIT621 13/27

https://www.postgresql.org/docs/15/plpgsql.html
https://www.postgresql.org/docs/15/plpgsql-errors-and-messages.html
https://www.postgresql.org

Triggers on Tables

See documentation for further information on the creation of triggers.

CREATE TRIGGER trigger name
AFTER |BEFORE INSERT |UPDATE |DELETE ON table name
FOR EACH ROW | STATEMENT
EXECUTE FUNCTION function name ();

Can also combine events and have a condition when to be executed:

CREATE TRIGGER trigger name
AFTER UPDATE OR DELETE ON table name
FOR EACH ...
WHEN condition
EXECUTE FUNCTION function name ();

February 6th 2023, Lecture 8 TDA357/DIT621 14/27

https://www.postgresql.org/docs/15/sql-createtrigger.html

Per-row vs. Per-statement Triggers

See documentation for more information on the behavior of triggers.

Per-row triggers: The function is invoked once for each row that is
affected by the statement that fired the trigger
(not just once for the action!);

Per-statement trigger: The function is invoked only once when an
appropriate statement is executed, regardless of the number
of rows affected (in particular, a statement that affects zero rows will

still result in one execution).

Note: Per-statement triggers DO NOT have access to OLD!!!
So OLD.attribute will simple be NULL.

February 6th 2023, Lecture 8 TDA357/DIT621 15/27

https://www.postgresql.org/docs/15/trigger-definition.html

NEW and OLD

When executing a trigger function on a row/table entry:

NEW.<attribute-name> refers to the new value of an attribute:

Can be used in functions triggered by INSERT or UPDATE;

It contains the value that has just been inserted/updated;

Possibly RETURN NEW in such functions.

OLD.<attribute-name> refers to the old value of an attribute:

Can be used in functions triggered by DELETE or UPDATE;

It contains the value of the attribute in the row that has been (or is
about to be) deleted/updated;

Possibly RETURN OLD in such functions.

February 6th 2023, Lecture 8 TDA357/DIT621 16/27

Returning NEW, OLD or NULL?

Trigger functions shuould always end with a RETURN statement.
But what to return?

For row level triggers, a row of the table on which the trigger is
defined (NEW or OLD);

For statement level triggers, the value NULL.

Observe that:

The return value is ignored for row level AFTER triggers;

In row level BEFORE triggers:

If the trigger returns NULL, the triggering operation is aborted, and
the row will not be modified!
For INSERT and UPDATE triggers, the returned row is the input for
the triggering statement.

Read this for more information.

February 6th 2023, Lecture 8 TDA357/DIT621 17/27

https://www.cybertec-postgresql.com/en/what-to-return-from-a-postgresql-row-level-trigger/

Example: A Trigger for Transferences between Accounts

CREATE OR REPLACE FUNCTION make transfer () RETURNS TRIGGER AS $$
BEGIN

UPDATE Accounts SET balance = balance - NEW.amount
WHERE id=NEW.sender;
UPDATE Accounts SET balance = balance + NEW.amount
WHERE id=NEW.receiver;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

DROP TRIGGER IF EXISTS after insert on transfer ON Transfers;

CREATE TRIGGER after insert on transfer
AFTER INSERT ON Transfers
FOR EACH ROW
EXECUTE FUNCTION make transfer ();

Note: If we set BEFORE in the trigger, it will still do the work.
February 6th 2023, Lecture 8 TDA357/DIT621 18/27

Example: A Trigger to Guarantee a Minimum Balance

CREATE FUNCTION checkMinimumTotalBalance () RETURNS TRIGGER AS $$
DECLARE

total INT;
BEGIN

total := (SELECT SUM(balance) FROM Accounts);
IF total < 30000 THEN

RAISE EXCEPTION ’error: total balance would be %, which is too low’, total;
END IF;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER minimumBankBalance
AFTER UPDATE OR DELETE ON Accounts
FOR EACH STATEMENT
EXECUTE FUNCTION checkMinimumTotalBalance ();

Note: If we set BEFORE in the trigger, then the check will be done before
the update/deletion and will not make sense!
February 6th 2023, Lecture 8 TDA357/DIT621 19/27

Trigges on Views

Views are used for querying but not for modifying data.

However, with an INSTEAD OF trigger we can make changes to the
underlying tables in response to INSERT, UPDATE or DELETE on the
view.

CREATE TRIGGER trigger name
INSTEAD OF INSERT |UPDATE |DELETE ON view name
FOR EACH ROW | STATEMENT
EXECUTE FUNCTION function name ();

If for example the trigger is INSTEAD OF INSERT, we can then insert
on/via the view:

INSERT INTO view name VALUES (...);

February 6th 2023, Lecture 8 TDA357/DIT621 20/27

Using Functions in Triggers

If the function raises an error in any of the rows that are affected, the
whole transaction is “rolled back” and the database is not modified at
all!

One needs to be careful not to have an infinite recursive function call!
Example: An UPDATE trigger that performs UPDATEs!

One could avoid infinite recursive calls with the following condition:

WHEN (pg trigger depth() < 1)

When a trigger reports ”X rows deleted” it actually means that the
trigger was executed for X rows, the database may not have been
changed at all;

Triggers on tables or on views? Depends on what you are doing but
views are the interface of the database and it is usually safe to work
on them!

February 6th 2023, Lecture 8 TDA357/DIT621 21/27

Constraints, Views and Triggers

Database integrity can be improved by several techniques:

SQL Constraints: conditions on attribute values and tuples.

Views: virtual tables that show useful information that would create
redundancy if stored in the actual tables.

Triggers (and assertions if available): automated checks and actions
performed on entire/several tables.

As a general rule, these methods should be applied in the above order: if a
constraint or a view can adequately do the job, do not use a trigger!

February 6th 2023, Lecture 8 TDA357/DIT621 22/27

Example: Constraints, Views and Triggers (I)
You need to implement

a database with this de-

scription, but you are al-

lowed to divide it across

as many tables and

views as you need to.

Assignments (course, name, description, deadline)
Submissions (idnr, student, course, assignment, stime)

(course, assignment) → Assignments.(course, name)
SubmittedFiles (submission, filename, filesize, contents)

submission → Submissions.idnr
Registered (student, course)

You should also enforce the following additional constraints:

1 The newer a submission is, the higher its idnr;

2 Students can only submit solutions to assignments in courses they are registered
for;

3 filesize always reflects the length of content (computable by length(contents) in
PostgreSQL); a database user should not need to specify filesize when adding a
new file to a submission;

4 When a submission is deleted, its files should also be deleted automatically;

5 When all files of a submission are deleted, delete the submission itself as well;

6 A student cannot have two submissions for the same assignment with exactly the
same time.

February 6th 2023, Lecture 8 TDA357/DIT621 23/27

https://www.postgresql.org/

Example: Constraints, Views and Triggers (I, Cont.)

For the SQL code with the tables and views see the end of the file
lecture8.sql (available from Canvas).

1 A trigger on INSERT OR UPDATE on Submissions that either
automatically adjusts the idnr or rejects updates that violate the rule;

2 See reference to Registrations in Submissions;

3 See view SubmittedFiles;

4 See ON DELETE CASCADE on the reference to Submissions in
SubmittedFileTables;

5 A trigger AFTER DELETE (and maybe even OR UPDATE to be safe)
for SubmittedFiles that checks if the last file was deleted and if so, run
DELETE FROM Submissions WHERE idnr = OLD.submission;

6 See UNIQUE constraint in Submissions.

February 6th 2023, Lecture 8 TDA357/DIT621 24/27

https://chalmers.instructure.com/courses/22260/files/2600914?module_item_id=330880

Example: Constraints, Views and Triggers (II)

Consider a database for storing messages with at least the following
interface (there could be more tables/views):

Messages (id, sender, receiver, text, time)
RemovedMessages (id, sender, receiver, text, time)

No message should appear in both of these tables/views.

1 Explain how the database could be implemented so that one can
remove a message with a single SQL statement; avoid using triggers
if possible;

2 Explain also how to keep at most the latest 100 messages removed
from each message receiver, permanently deleting any older messages
from the database.

February 6th 2023, Lecture 8 TDA357/DIT621 25/27

Example: Constraints, Views and Triggers (II, Cont.)

1 Some possible solutions that have both Messages and
RemovedMessages as views:

1 Have a single table, like Messages but with an extra attribute isDeleted
of type BOOLEAN; then the views simply filter on that condition or its
negation.
The removal operation just sets isDeleted to TRUE.

2 Have a table for all messages, and one for the ids of removed messages
(with a reference to the other table). Messages view uses NOT IN and
RemovedMessages is just a join on the two tables.
The removal operation is an insert into the table for removed messages.

3 Like above but with a table for the messages (ids) in the “inbox”.

2 Depending on which of the approaches above you use, a trigger after
UPDATE, INSERT or DELETE could be used.
If using a FOR EACH ROW trigger, it should be enough to use an
IF-statement that checks if there are more than 100 messages for the
same receiver (as OLD or NEW) and delete the oldest row for that
receiver if there is.

February 6th 2023, Lecture 8 TDA357/DIT621 26/27

Overview of Next Lecture

Databases in software application (by Jonas).

Reading:

Book: chapter 9

Notes: chapter 8

February 6th 2023, Lecture 8 TDA357/DIT621 27/27

