
TDA357/DIT621 – Databases
Lecture 9 – JDBC, Database security

Jonas Duregård

The final piece of the relational database puzzle

• We already know how to:

• Design a database from an informal domain description

• Implement constraints: the user can do everything they need to
do, and nothing they shouldn't be doing

• Avoid redundancy and update/deletion anomalies

• Query the database for information

• Issue: The only way we have communicated with the database so far
is through specialized tools (psql/pgAdmin/IDE plugins/…)

• We need to learn to access the database from other applications

A typical web-service infrastructure

Database

server
HTTP

server

Queries

Result tables

Data center local network

HTTP request HTTP response

Web client

• The web-server software communicates with the database server

• Impossible to connect directly to the database from the internet

Python or Java?

• For the labs you can use either language

• Today I will show you both, but focusing on Java

Database connectivity

• To connect to a database from an application, we need software libraries

• All major programming languages have at least one such library

• JDBC (Java Database Connectivity) is a library for Java

• Can connect to lots of different DBMS using different driver classes

• Provides a common interface (classes and methods) for running
queries and processing their results in Java programs

• psycopg2 is a python library for connecting to Postgres

Using JDBC – step by step
1. Load the Postgres driver (or another DBMS driver)

2. Initiate a single Connection object, by providing server URL, username etc.

3. Create one or more Statement or PreparedStatement objects from the
connection (each represents a 'channel' for executing a query or a statement)

4. Executing queries through statements give a ResultSet object
(represents a query result, that can be iterated row by row)

• Each of these objects is a resource that needs to be closed after use

• Any of these steps can fail for various reasons, throwing a SQLException

• Error handling is important

• All these classes (except the Postgres driver) are described in the Java API
https://docs.oracle.com/javase/8/docs/api/java/sql/package-tree.html

The 'boilerplate' code

String DATABASE = "jdbc:postgresql://localhost/portal"

Class.forName("org.postgresql.Driver");

Properties props = new Properties();

props.setProperty("user", "postgres");

props.setProperty("password", "postgres");

// Try-with-resource (requires Java 7) closes connection automatically

try (Connection conn = DriverManager.getConnection(DATABASE, props)) {

<actual code goes here>

} catch (SQLException e) {

System.err.println(e);

}

Typical main program, loading the driver and initiating a connection

Deal with (unexpected) errors here

Load the driver

Open the connection

Try-with-resource

• You may not recognize this syntax:

• It is a relatively new feature of Java (from 2011, so not THAT new)

• Makes sure that conn.close() is called no matter what exceptions are thrown

• Replaces this old trick:
Connection conn = null;
try {

conn = ...
} finally {

if (conn != null) conn.close();
}

try(Connection conn = DriverManager.getConnection(DATABASE, props)){

<actual code goes here>

} <catch errors here>

Connecting to a database on your own machine

• Set DATABASE = "jdbc:postgresql://localhost/portal";
to connect to a database installed on your own machine (where "portal" is
the name of your database, may not be needed for some configurations)

Hostname (localhost means the machine running Java)

Name of database

Your first challenge: Loading the driver
• For the program to work, a jar file (postgresql-42.2.18.jar) needs to be in your

runtime class path

• This can be achieved in a number of ways (which makes it complicated):

• Add it to your CLASSPATH system variable

• Set a CLASSPATH variable in your IDE

• Import the .jar file directly into Eclipse or similar IDE

• Add it to the classpath when invoking the java command line tool

• ...

• The details differ depending on operating system and Java IDE

• Good luck, and remember to use the Slack and/or Google
(something like "add jar file to runtime classpath eclipse" should help)

Python – psycopg2

• External python library, must be installed

• Most of the time this console commandwill work:

pip install psycopg2

psycopg2 boilerplate

import psycopg2

try:

 with psycopg2.connect(

 host="localhost",

 user="postgres",

 password="postgres") as conn:

 conn.autocommit = True

 # actual code goes here

except psycopg2.Error as e:

 print(str(e))

with … as … is try-with-resource in Python

Does important stuff

(see lecture on transactions)

Your first JDBC program
• Assuming conn is the Connection object we opened earlier

• Queries are written in Java strings

• Use try-with-resource to automatically close Statements

String query = "SELECT idnr,name FROM BasicInformation";

try (Statement s = conn.createStatement();){

ResultSet rs = s.executeQuery(query);

while(rs.next()){

String id = rs.getString(1);

String name = rs.getString(2);

System.out.println(id + " " + name);

}

}

next() moves to the next row, returns

false if there are no more rows

loop through whole result

fetches column 2 (name)

of the current result row

Run the query

The next() method in ResultSet
• Each ResultSet has an internal cursor pointing at the current row in the result

• Initially the cursor is "above" the table, pointing at no row

• If there is a row below the current one, next() will move to it and return true

• Otherwise it closes the ResultSet and returns false

• If next() returns false or has not been called, calls to get* will throw exceptions

while(rs.next()){

System.out.println(rs.getString(1)+" "+rs.getString(2));

}
Result in rs

idnr name

1111111111 S1

2222222222 S2

Call 1: cursor "above" table, move to first row and return true

Call 2: cursor at first row, move to second and return true

Call 3: cursor at second row, close and return false

(this terminates the loop!)

For this result, next() is called 3 times

Single row query
• Replace the while-loop with an if-else for queries that should give a single row

• The else-clause deals with the case when no row is found

String query =

"SELECT idnr,name FROM BasicInformation WHERE idnr='2222222222'";

try (Statement s = conn.createStatement();){

ResultSet rs = s.executeQuery(query);

if(rs.next())

System.out.println(rs.getString(2));

else

System.out.println("error, no such student!");

}

Always a single call to next()

We could use if(rs.next()) again to check that there are no more rows

Updates (includes deletes and inserts!)

• The executeUpdate method in Statement is for UPDATE/INSERT/DELETE

• Also for creating/dropping tables etc, but that's rarely done from applications

• Does not give a ResultSet, instead gives an int (the number of affected rows)

String query="DELETE FROM Registered WHERE student='1111111111'";

try (Statement s = conn.createStatement();){

int r = s.executeUpdate(query);

System.out.println("Deleted "+r+" registrations.");

}

r will be the number of rows deleted

(or sometimes more like "the number of times a trigger was executed"...)

The hassle of writing queries as Strings

• In JDBC, queries are just strings

• Requires escaping special characters: If I want to write a query like
INSERT INTO Notes VALUES ('The "root" is C:\')
it will look like this in Java:
"INSERT INTO Notes VALUES ('The \"root\" is C:\\')"

• Things like line breaks in the definition are annoying (use + operator)

• Syntax errors and type errors in SQL are not discovered until runtime

There are some new-ish Java

features to avoid this! (Text Blocks)

String operations

String sid = "111111111";

String code = <request user input>;

String query = "DELETE FROM Registered WHERE student='"+sid+

"' AND course='"+code+"'";

try (Statement s = conn.createStatement();){

int r = s.executeUpdate(query);

System.out.println("Deleted "+r+" registrations.");

}

• Queries can but shouldn't be built using + and similar String operations

• In the code below, if the user inputs "ccc111", query will be:
DELETE FROM Registered WHERE student='1111111111' AND course='CCC111'

USING THIS CODE IS A BAD IDEA – see subsequent slides

A most nefarious student

• What happens if the student inputs this course code: "x' OR 'a'='a"?

• The query will be:
DELETE FROM Registered WHERE student='1337' AND course='x' OR 'a'='a'

• Ooops, that query just deleted all our registrations...

String sid = "1337";

String code = <request user input>;

String query = "DELETE FROM Registered WHERE student='"+sid+

"' AND course='"+code+"'";

WHERE-clause is always true

SQL injection attacks
• The trick on the last slide is called SQL injection

(because we "inject" code into user inputs)

• In the youth of the WWW, this could
be used to hack almost any website

• The counter is to sanitize input data,
making sure reserved characters (like
single quotes) are
properly escaped

• Still, lots of programmers
are too lazy to do this...

image credit: xkcd.com

In the worst cases, you can even run

arbitrary statements (that is why ; is

not allowed at all in JDBC queries)

SELECTS are also vulnerable

• A query like this may seem harmless:
"SELECT code FROM Registered WHERE student='"+student+"'"

• But for the wrong value of student it will give this query:
SELECT code FROM Registered WHERE student='hacker'
UNION SELECT password FROM users WHERE uname='admin'

• We just selected a list of courses ending with the password of the admin user

• Can be used to automatically extract the whole contents of the database

•

An unusual SQL injection example

• In the 2010 Swedish election, someone wrote "DROP TABLE VALJ;" on their
voting ballot

• The text of the ballot was then manually entered into a computer system by
election workers (as a non-registered party name)

• The attack was not successful, but the vote can still be found in public records:
https://data.val.se/val/val2010/statistik/index.html#handskrivna
(link no longer works)

• There are also several examples of people writing JavaScript code on their
ballots, presumably attempting to run it in the browsers of those reading the
vote results (another kind of code injection)

SQL injection wins again!

• The OWASP (Open Web Application Security Project) categorizes and assess
security vulnerabilities, including a "top ten vulnerabilities list"

• To absolutely no one's surprise, injection attacks remains the most common
and impactful category of security vulnerabilities of the Web

• If there is ever a situation where you should have security in mind, this is it

• Consider every user an attacker

• There is no such thing as being paranoid about this

Do NOT do this at home

Now you know what SQL Injection is! Please use this knowledge responsibly

DO NOT EXPLORE POTENTIAL SECURITY FLAWS
IN ANY SYSTEM WITHOUT EXPLICIT PERMISSION

It is illegal, unethical and possibly extremely harmful

NOT a valid excuse

Prepared Statements
• Prepared statements simplify query writing, and prevents SQL injection

• Each user input is replaced by '?', and set using library methods before the
query is executed

try(PreparedStatement ps = conn.prepareStatement(

"DELETE FROM Registered WHERE student=? AND course=?");){

String sid = "111111111";

String code = <request user input>;

ps.setString(1,sid);

ps.setString(2,code);

ps.executeUpdate();

}

Turns the Java string into an SQL string,

escaping as needed and adding enclosing

single quotes, placing it in parameter 2

Two parameters (1 and 2)

Use prepared statements

• You should use prepared statements for all queries and statements that
contain any kind of user input

• Good rule of thumbs: Always use prepareStatement() instead of
createStatement() unless you have a compelling reason not to
(which you will never have in this course)

Debugging JDBC code
• Getting syntax errors? Query running but not getting the result you expected?

• Add some debug printing! (Or use a proper debugger)

• Run the printed query in psql to get a better idea of what's wrong

• Always remove your debugging code before submitting!

try(PreparedStatement ps = conn.prepareStatement(

"DELETE FROM Registered WHERE student=? AND course=?");){

System.out.println(ps);

ps.setString(1,sid);

ps.setString(2,code);

System.out.println("query is: " + ps);

int r = ps.executeUpdate();

}

Prints the actual query being executed, including set parameters

Sanitized string

try(PreparedStatement ps = conn.prepareStatement(

"DELETE FROM Waiting WHERE position=? AND course=?");){

int pos = 1;

String code = "x' OR 'a'='a";

ps.setInt(1,pos);

ps.setString(2,code);

System.out.println(ps);

}

Output:

DELETE FROM Waiting WHERE position=1 AND course='x'' OR ''a''=''a'

Double single-quotes () is how

single quotes are escaped in SQL

(this SQL-string contains four

single quotes, like the Java string) No single qoutes around numbers

Debugging JDBC, part 2
• Remember: Changes to the database are persistent!

• If you accidentally or deliberately make JDBC run a query that deletes
a registration, that registration will be gone even if you recompile and
re-run your program

• Solution: Re-run your "setup.sql" file in psql now and then (including
creating triggers), to delete the whole database and recreate it with
prepared inserts

• If you need more/different test data to test your program, add it to
your setup

• A special case: If both members of the group connect to the same
database, be mindful that you may interfere with one another

Your first JDBC program – done right
• The first example, using prepared statement

• No set* operations required on s in this case

try (PreparedStatement s = conn.prepareStatement(

"SELECT idnr,name FROM BasicInformation");){

ResultSet rs = s.executeQuery();

while(rs.next()){

String id = rs.getString(1);

String name = rs.getString(2);

System.out.println(id + " " + name);

}

}

Java example:
Check if a student is registered on a course

try (PreparedStatement ps = conn.prepareStatement(

"SELECT * FROM Registered WHERE student=? AND course=?");){

ps.setString(1, "1111111111");

ps.setString(2, "CCC111");

ResultSet rs = ps.executeQuery();

if(rs.next())

System.out.println("Yes, you are registered :)");

else

System.out.println("No, you are not registered :(");

}

Replace with user input

Your first psycopg2 program

with conn.cursor() as cur:

 cur.execute("SELECT idnr,name FROM BasicInformation")

 rows = cur.fetchall()

 for row in rows:

 id = row[0]

 name = row[1]

 print("%s %s" % (id, name))

A cursor is much like a Statement

Something like a resultset, but

with better language support

Python example:
Check if a student is registered on a course

with conn.cursor() as cur:
 id="1111111111"
 course="CCC111"
 cur.execute("SELECT * FROM Registered WHERE student=%s AND course=%s", (id,course))
 if (cur.fetchone()):
 print("Yes, you are registered :)")
 else:
 print("No, you are not registered :(")

Like ? in Java (s is for String)

Values to substitute (left to right)

Injection vulnerability in Python

Vulnerable:

Safe:

cur.execute("SELECT * FROM Registered WHERE student='%s' AND course='%s'" % (id,course))

cur.execute("SELECT * FROM Registered WHERE student=%s AND course=%s", (id,course))

cur.execute("SELECT * FROM Registered WHERE student='%s' AND course='%s'" % (id,course))

cur.execute("SELECT * FROM Registered WHERE student=%s AND course=%s", (id,course))

Uses the % operator to insert text into the string

Sends a single parameter to execute

Sends both template and variable values to execute

Python: Updates and affected rows

• Updates are done using execute just like queries

sql = """DELETE FROM Registrations
 WHERE student = '1111111111' """
cur.execute(sql)
r = cur.rowcount:

Gives you the number of rows affected

Multiline strings are nice

Repeating prepared statements
• Sometimes you need to work with several prepared statements simultaneously

• If a prepared statement is executed several times, it is generally a good idea to
reuse it (just changing the parameters)

• Example: Delete all grades for everyone named Jonas and print how many
where deleted for each such student (if more than 0)

• See next slide

try (PreparedStatement ps1 = conn.prepareStatement(

"SELECT idnr FROM BasicInformation WHERE name=?");

PreparedStatement ps2 = conn.prepareStatement(

"DELETE FROM Taken WHERE student=?");

){

ps1.setString(1,"Jonas");

ResultSet rs1 = ps1.executeQuery();

while(rs1.next()){

String id = rs1.getString(1);

ps2.setString(1,id);

int n = ps2.executeUpdate();

if (n > 0)

System.out.println("Deleted "+n+" grades for "+id);

}

}

Run multiple times

Create each statement only once

(once per method call at least)

I could run a single DELETE, but then I would not get this detailed output

Important limitation

• Any (prepared) Statement object can only have a single open
ResultSet at a time

• If you need to process several results simultaneously, make sure they
are from different statement objects

Avoid doing what SQL does best in Java/Python

• Just like in PL/SQL (triggers) it is often possible to use SQL more, and
procedural code less

• For instance, if doing something like "list all students and for each
student also list their unread mandatory courses"

• It sounds like a nested loop, but could it be done using a join and a
single loop?

• Not always desirable, but keep the possibility in mind

• For efficiency, fewer queries are better, so push as much work as
possible into the DBMS to lessen communication

Avoid repeating your constraints
• If your database already has e.g. a unique constraint, don't run a

query to make sure your insert does not violate it

• Instead, just run the insert and catch the exception you would get
from violating the unique constraint!

• In particular: Don't re-implement the checks your triggers do!

Writing complex queries in JDBC?

• It's possible to write the whole PathToGraduation query directly in Java/Python

• It's incredibly annoying, since you will be writing all your code in a String literal

• Made less horrible by multiline strings

• Rule of thumb: Stick to using simple queries in your application, and write
complex queries by creating views in .sql files

• Less risk of runtime errors (views are syntax/typechecked when created)

• Easier to test the queries

• Easier to write the queries with syntax highlighting and without quoting

• Easier for the DBMS to optimize

Another security issue
• Do you plan on making a web service with user logins?

• Never, ever create a table that contains passwords in plain text

• Sooner or later, someone will hack your database and they will (most likely)
have the default password of all your users

• Remember: Everyone is an attacker

• Instead, you should store a cryptographic hash of the password

• A hash function reduces an arbitrarily large string to a fixed size number

• You may get the same hash value for different strings, but only rarely

• Similar to hashcodes in Java objects, but cryptographic hash functions are a
lot harder to reverse (hard to find a string that gives a certain hash value)

BONUS SLIDES!

That I will probably not have time for

Efficiency of databases

In this course we do not talk a lot about efficiency, primarily for two reasons:

1. Predicting database performance is difficult due to automatic optimizations

• Writing a more complicated query for efficiency may make no difference

• Worse: It may degrade performance because the DBMS fails to optimize it

2. Premature optimization is a problem

• A lot of people worry about performance when they should be worrying
about correctness and ease of use (and productivity)

• A good approach to efficiency in most cases: Write a simple and elegant
solution. If it is too slow, write a messy but hopefully efficient solution

• Use the simple solution as a reference to test the messy one

A famous quote (my emphasis)

"Programmers waste enormous amounts of time thinking about, or

worrying about, the speed of noncritical parts of their programs, and these

attempts at efficiency actually have a strong negative impact when

debugging and maintenance are considered. We should forget about small

efficiencies, say about 97% of the time: premature optimization is the root

of all evil. Yet we should not pass up our opportunities in that critical 3%."

- Donald Knuth (1974)

About complexity of database operations

• Analyzing database operations using asymptotic complexity (O-notation) can
be misleading

• The reason is that most work of a typical persistent database is spent on:

• Disk access (reading/writing large blocks of data from disk)

• Network communication (receiving queries and sending results)

• The former means that rather than the number of rows, we should discuss
how many different disk locations we fetch rows from

• The latter means running fewer queries is better

General techniques for efficient databases

• Today I will show you two techniques that can be used to make
databases more efficient:

• Indexes

• Materialized views

• Neither of them are "silver bullets"

• All obvious optimizations are done automatically by the DBMS

• Both techniques can inadvertently degrade performance

• Require careful consideration

Indexes

• I have a large printed collection of karaoke tracks, organized by producing label

• Users typically want to look up tracks by artist or title

• Problem: Searching through the whole collection linearly is time consuming

• Solution: Print two indexes, one where all tracks are ordered by artist and one
where they are ordered by title

• Users can binary search (most of them without knowing it)

• Whenever we add new tracks to the collection, we also need to update
both the indexes

Indexes in SQL

• An index is separate from, but connected to a table

• It is created on a set of columns on that table

• It allows us to quickly find all rows with given values for those columns

• An index on (artist,album) would allow us to quickly find all karaoke
tracks with a certain artist and album name

• How lookups work is DBMS-specific, but hash-tables are typically used

• Created automatically for primary keys and UNIQUE-constraints

• Automatically used when selecting/updating/deleting using WHERE-clauses

• Updated automatically when a row is deleted/updated/inserted

• May make inserts a lot slower

• Uses disk space, often more than the table itself

Why not create all indexes automatically?

• For a table with 10 columns, there are 210-1=1023 possible indexes

• Updating a thousand indexes with each insert/update/delete would
be extremely detrimental to performance

• Disk space usage could suddenly become an issue if you use about
1000 times more space

• Megabytes become gigabytes, gigabytes become terabytes...

When should indexes be used?

• These conditions give a hint that using indexes may be a good idea:

• You have many rows (if you have a few hundred rows, the extra disk
access for reading the index is more time consuming than a linear lookup)

• Why are you even worrying about performance for hundreds of rows?!

• You are frequently doing lookups/joins etc. on a non-key

• You are not worried about inserts being slower or disk space issues

Creating indexes

• Most DBMS support the statement:
CREATE INDEX index_name ON table(attributes);

• Not part of the SQL standard

• Can be done on existing tables with data (may take some time to create)

• Existing SQL queries do not need to be changed in any way

Materialized views

• The views you have been writing are virtual

• They are just a name for a query

• Using a view in a query FROM-clause is the same as using a subquery

• Obvious opportunity for performance gain:
Caching the result of the view could save a lot of time

• Obvious new performance problem:
When the table data is changed, the query result needs to be updated

Materialized views in SQL

• Replace CREATE VIEW by CREATE MATERIALIZED VIEW

• Instead of just writing a query, you create a special kind of table that
is automatically updated to reflect the result of the query

• May have to recompute the whole query when a table is updated

• If updates are more frequent than selections, the materialized
view will be less efficient than a virtual view

Materialized views in postgres

In postgres, things work a bit differently:

• Materialized views are NOT automatically updated

• They reflect only the data that is in the tables when it is created

• User needs to run REFRESH MATERIALIZED VIEW; to update it

• Can be done via a trigger on underlying tables to emulate the
standard behavior (not a FOR EACH ROW trigger though!)

When should materialized views be used?

• You have a very costly query in a view

• One of two situations:

• The underlying tables are rarely modified, and view is often selected from

• You are OK with the view showing slightly outdated data (postgres specific)

• The latter could be implemented by scheduling a REFRESH to be done e.g.
once per hour/day/week

• Example: We have a view that shows the number of members in all
Facebook groups, but it doesn't have to be up to this minute

