Databases

TDA357/DIT621

Exercise 5

JSON

1 Binary Trees

A binary tree is a tree where every node either branches into two binary trees or is a leaf,
i.e. contains just a value. Here is an example of a binary tree:

/N /\
0 24 6

1. Design a JSON schema for representing binary trees using key/values for children.

Both the branching nodes and leaves should carry integer values. An important
property is that each node in the tree either has both a left and a right subtree, or
no subtree at all (that is, not just a left subtree).

For this schema:

(a) Show a JSON element representing the tree above, and that is valid according
to your schema.

(b) Write a (Postgres) JSON Path that returns:
i. All values in the binary tree; for the above example, it should return

0,1,2,3,4,5,6 (in any order).

ii. All data values of left subtrees (0,1,4).

iii. All values in the third level of the tree (0,2,4,6).

iv. All values greater than 3.

v. All values greater than the value in the root node (should work for all
trees).

(¢) Try to even define a variant where data is required in leaves but not in branches.

2. Do the same as above (schema, element and paths) but for a representation using
arrays.

Solution:

1. Schema using key/values:

{"type": "object",
"oneOf": [{"$ref": "#/definitions/leaf"},
{"$ref": "#/definitions/tree"}],
"definitions": {
"leaf": {
"type": "object",
"properties": {"value": {"type": "integer"1}},
"required": ["value"],
"additonalProperties": falsel,
"tree": {
"type": "object",
"properties": {

"value": {"type": "integer"},

"left": {"$ref": "#"},

"right": {"$ref": "#"}},
"required": ["value","left","right"],
"additonalProperties": false}

}
}

(a) Element:

{ "value":3,
"left": {
"value":1,
"left": {"value":0},
"right": {"value":2}
},
"right": {
"value":5,
"left": {"value":4},
"right": {"value":6}
}
}

(b) Paths:

WITH Data AS
(SELECT °’{ "value":3,
"left": { "value":1,
"left": {"value":0},
"right": {"value":2}
1,
"right": { "value":5,
"left": {"value":4},
"right": {"value":6}
}
}’ :: JSONB AS val)
SELECT jsonb_path_query (val,
’strict $’) -- here you paste your query
FROM Data AS res; -- like this it will return the whole object

i. ’strict $.**.value’

ii. ’strict $.**.left.value’

iii. ’lax $.*.*.value’

iv. ’strict $.xx7(Q@ > 3)’
alternative: ’strict $.#**.value?(@ > 3)°
alternative: ’strict $.**7(@.value > 3).value’

v. ’strict $.*x7(@ > $.value)’
alternative: ’strict $.**.value?(@ > $.value)’
alternative: ’strict $.*x7(@.value > $.value).value’

\

(c) Variant schema: just remove required “value” from what is required in “tree”.

2. Schema using arrays:

{ "type": "object",
"properties": {
"value": {"type": "integer"},
"children": {"type": "array",
"items" : {"$ref": "#"3},
"minTtems":2,
"maxItems":2}},
"required": ["value"],
"additionalProperties": false

(a) Element:

{ "value":3,
"children": [
{"value":1,
"children": [{"value":0},{"value":2}]1},
{"value":5,
"children": [{"value":4},{"value":6}]}
]
}

(b) Paths:

i. ’strict $.**.value’

ii. ’strict $.#**.children[0].value’

iii. ’strict $.children[*].children[*].value’

iv. ’strict $.x*x7(Q@ > 3)’
alternative: ’strict $.**.value?(@ > 3)°
alternative: ’strict $.*x7(Q@.value > 3).value’

v. ’strict $.*x7(Q@ > $.value)’
alternative: ’strict $.*x.value?(@ > $.value)’
alternative: ’strict $.*x7(@.value > $.value).value’

A\

(c) Variant schema: kind of tricky. Requires a separate definitions for branches/leafs,
with leafs requiring “value” and branches requiring “children” (and having data
optional).

2 Flights

Given the following schema:

Airports (code, city)
FlightCodes (code, airlineName)

Flights (departureAirport, destinationAirport, code)
departureAirport — Airports.code
destinationAirport — Airports.code
code — FlightCodes.code

a) Write a JSON schema corresponding to this database schema. Translate the relational
schema as faithfully as possible (there is nothing you can do about the references, but
can you have primary keys in JSON?).

b) Write a JSON document with the data in the table below, which validates with your
schema.

’ Flight code ‘ Airline ‘ Dep.city ‘ Dep.airport | Arr.city ‘ Arr.airport
SK111 SAS Gothenburg | GOT Frankfurt | FRA
AF222 Air France | Paris ORY Malta MLA
AB222 Air Berlin | Frankfurt FRA Munich MUC
KM111 Air Malta | Munich MUC Malta MLA

c) Write a Postgres SQL query that extracts the JSON data from the tables. The file
ex5.2.sql contains some code to get you started.

d) Write a (Postgres) JSON Path that finds the flight code of all flights to Malta.

Hint: You can use the “additionalProperties” keyword to specify a schema for all
properties of an object (except the ones mentioned in “properties”).
Hint: Maybe it is easier to start with the document and then write the schema?

Solution:

a) Key/value pairs can be used to have primary keys (because there are no compound
keys!).

Tiny example data (used to build schema):

{ "Airports": {"GOT": "Gothenburg"},
"FlightCodes": {"SK111": "SAS"},
"Flights": {"SK111" : {"dep" : "GOT", "dest":
}

IIFRAll}}

Schema:

{"type": "object",
"properties": {
"Airports": {
"type":"object",
"additionalProperties":{"type":"string"}
1,
"FlightCodes": {
"type":"object",
"additionalProperties":{"type":"string"}
1,
"Flights": {
"type":"object",
"additionalProperties":{
"type":"object",
"properties":{
"dep":{"type":"string"},

"dest":{"type":"string"}},
"required": ["dep","dest"],
"additionalProperties": false
}
13,
"required": ["Airports","FlightCodes","Flights"],
"additionalProperties": false

}
b) Complete data:

{ "Airports": {"GOT": "Gothenburg",
"FRA": "Frankfurt",
"ORY": "Paris",
"MUC": "Munich",
"MLA": "Malta"},
"FlightCodes": {"SK111": "SAS",
"AF222": "Air France",
"AB222": "Air Berlin",
"KM111": "Air Malta"} ,

"Flights": {"SK111" : {"dep" : "GOT", "dest": "FRA"},
"AF222" : {"dep" : "ORY", "dest": "MLA"},
||AB222|| . {Ildepll . IIFRAH s "deSt" . IIMUCII} ,
"KM111" : {"dep" : "MUC", "dest": "MLA"}}

¢) Query to automatically export database:

—-- Convert all three tables into one big JSON document

WITH

Ap AS (SELECT json_object_agg(code, city) AS jsondata
FROM Airports),

Fc AS (SELECT json_object_agg(code, airlineName) AS jsondata
FROM FlightCodes),

F AS (SELECT
json_object_agg(code,
jsonb_build_object(’dep’, departureAirport,
’dest’, destinationAirport)
) AS jsondata FROM Flights)

SELECT jsonb_pretty(
jsonb_build_object(’Airports’, (SELECT jsondata FROM Ap),
’FlightCodes’, (SELECT jsondata FROM Fc),
’Flights’, (SELECT jsondata FROM F)));

d) ’strict $.Flights.keyvalue()?(@.value.dest == "MLA").key’ finds the flight code
of all flights to Malta.

3 Applications

Below is some JSON data. It has been compiled by translating this schema in the most
direct way possible:

Applicants (appNum, name)

Choices (applicant, code, choiceNum, score)
applicant — Applicants.appNum

{

‘“Applicants’’: [

{¢‘“appNum’’: “al”, ¢ ‘name’’: “Andersson”},
{¢“appNum’’: “a2”, ¢ ‘name’’: “Jonsson”},
{¢“appNum’’: “a3”, ‘‘name’’: “Larsson”}

]7

“‘Choices’’: [
{¢‘applicant’’: “al”, ‘‘code’’: “MPSOF”, ¢‘choiceNum’’: 1, ‘‘score’’: 750},
{¢‘applicant’’: “al”, ‘‘code’’: “MPALG”, ¢‘choiceNum’’: 2, ‘‘score’’: 750},
{¢‘applicant’’: “al”, ‘‘code’’: “MPCSN”, ¢‘choiceNum’’: 3, ‘‘score’’: 800},
{¢‘applicant’’: “a2”, ‘‘code’’: “MPALG”, ‘‘choiceNum’’: 1, ‘‘score’’: 700},
{¢‘applicant’’: “a3”, ‘‘code’’: “MPCSN”, ¢‘choiceNum’’: 1, ‘‘score’’: 850},
{¢‘applicant’’: “a3”, ‘‘code’’: “MPALG”, ¢ ‘choiceNum’’: 2, ‘‘score’’: 850}

]
t

a) Can you rewrite the data into a more semi-structured format that uses the fact that
there are no tables? Here are some suggestions:

e Avoid repeating applicant numbers (and the implicit references that exist in the
data);
e Use key/value pairs instead of an array of rows;

e Maybe choice numbers are not needed?
b) Write a JSON schema for your modified data.

c) Write a (Postgres) JSONPath query on your modified data that finds all “choices”
where choiceNum is 1 and score is greater than 800.

d) Write a (Postgres) JSONPath query on your modified data that finds the names of the
applicants of the choices from above, that is, from all “choices” where choiceNum is 1
and score is greater than 800.

Solution:

a) Here we use the applicant id number as keys, and associate it with the applicant’s name
and a list of all his/her choices. We use array positions to represent choice numbers
(indexed from 0 instead of 1).

{
"al": {"name": "Andersson",
"choices": [{"code":"MPSOF","score":750},
{"code" : "MPALG", "score":750},
{"code" :"MPCSN", "score" :800}
]
},
"a2": {"name": "Jonsson",
"choices": [{"code":"MPALG","score":7003}]
},
"a3": {"name": "Larsson'",
"choices": [{"code":"MPCSN","score":850},
{"code" : "MPALG", "score" :850}
]
}
}

b) { "type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"name" : {"type": "string"},
"choices": {
"type": "array",
"items": {
"type": "object",
"properties": {
"code": {"type": "string"},
"score": {"type": "integer"}
1,
"additionalProperties": false,
"required": ["code", "score"]

1,
"required": ["choices", "name"],
"additionalProperties": false

c¢) Recall that application 1 has array index 0. Here are two possible ways to formulate
the query.

’strict $.**.choices[0]?(@.score > 800)’
’strict $.**7(@.choices[0].score > 800).choices[0]’

d) Here we get the name of the applicant in question:

’strict $.**x7(@.choices[0].score > 800) .name’

4 Inventory of Computer Components

(From a previous exam.)

The following is part of an inventory of computer components at a webstore, divided
into categories (such as GPUs, CPUs, ...). For each product, the information about
manufacturer, model, full price and current discount for the upcoming sale is stored.

GPUs
Nvidia 3070GTX 11890kr 5%
AMD RX6800 13490kr 10%
CPUs
Intel i7-12700K 4590kr 30%
AMD Ryzen 5600X 2739kr 12%
Memory

Corsair LPX 32GB 1489%kr 15%
Kingston Fury 64GB 2999kr 20%
Kingston Fury 128GB 4999kr 10%

a) Write a JSON document that encodes the data above. Make sure to keep the same
structure as the data above.
To avoid writing a big document, it is enough that the inventory in your document
fully contains just the first category (GPUs with all its products), with “...” to indicate
the rest.

b) Write a JSON schema that describes your encoding of the data that matches the JSON
document you provided in a). The schema needs to (at least) specify types of every
JSON value in your encoding and the required properties of the objects.

c) Write a JSON path query that finds those products that cost 2500kr or less after the
given discount has been applied.

Solution:

a) This is the whole data (as an array):

{"category": "GPUs",
"products": [

{"manufacturer": "Nvidia",
"model": "3070GTX",
"price": 11890,
"discount": 0.05

},

{"manufacturer": "AMD",
"model": "RX6800",
"price": 13490,
"discount": 0.10

}

13},
{"category": "CPU",
"products": [

{"manufacturer": "Intel",
"model": "i7-12700k",
"price": 4590,
"discount": 0.3

},

{"manufacturer": "AMD",
"model": "Ryzen 5600X",
"price": 2739,
"discount": 0.12

+
13,
{"category": "Memory",
"products": [

{"manufacturer": "Corsair",
"model": "LPX 32GB",
"price": 4590,

"discount": 0.15

s

{"manufacturer": "Kingston",
"model": "Fury 64GB",
"price": 2999,

"discount": 0.20

X,

{"manufacturer": "Kingston",
"model": "Fury 128GB",
"price": 4999,

"discount": 0.10

3

1},

10

3 4

but it’s OK if you just fully write the first category and then as stated in the
question. Observe that your category needs to still be one of the element of an array!

L ...,
{"category": "GPUs",
"products": [
{"manufacturer": "Nvidia",
"model": "3070GTX",
"price": 11890,
"discount": 0.05
s
{"manufacturer": "AMD",
"model": "RX6800",
"price": 13490,
"discount": 0.10
}
13,

b) The important bits here are that the outer structure is an array, and the discount and
price are numbers and not strings.

{ "type": "array",
"items": {"$ref": "#/definitions/categories"},
"definitions": {
"categories": {
"type": "object",
"properties": {
"category": {"type": "string"},
"products": {
"type": "array",
"items": {"$ref": "#/definitions/product"}
}
3,
"required": ["category","products"'],
"additionalProperties": false
3,
"product": {
"type": "object",
"properties": {
"manufacturer": {"type": "string"},
"model": {"type": "string"},

11

"price": {"type": "integer"},
"discount": {"type": "number"}

3,

"required": ["manufacturer",'"model",'"price","discount"],
"additionalProperties": false
}
}
}

¢) Here the solution depends on what the type of discount is.

If number as above then we have
’strict $.**7(Q@.pricex(1-@.discount) <= 2500)’

If you model the discount as an integer, then you need to divide by 100 as in:

’strict $.**x7(Q.pricex(1-(@.discount/100)) <= 2500)°’

12

