
Databases

TDA357/DIT621– LP3 2023

Lecture 12

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Dureg̊ard)

February 20th 2023



Recall Last Lecture

JSON:

Validation and schema;

JSON path language;

JSON path language in PostgreSQL.

February 20th 2023, Lecture 12 TDA357/DIT621 1/28



Overview of Today’s Lecture

Transactions:

ACID properties;
Interference problems;
Isolation levels;

Authorisation and privileges;

Indexes.

February 20th 2023, Lecture 12 TDA357/DIT621 2/28



Database Design and System Reliability

So far: ER-modeling, FD and NF: high-level design on how the
information in the database is organised;

SQL: Within the DBMS:

Creating tables, inserting and modifying values,
querying the database;
Constraints on types and attributes;
Requirements on changes (CASCADE);
More complex restrictions, for example involving several
tables (ASSERTION and TRIGGER).

Today (but not in depth):

Transactions: Ensure that concurrent database access does
not corrupt the data or return inconsistent
results;

Authorization: Give (different) access to different users;
Indexes: Fast retrieval of data (belongs to design part).

February 20th 2023, Lecture 12 TDA357/DIT621 3/28



Transactions

Some changes in a database requires more than one update but need to be
executed as part of an atomic transaction.

Example: Transferring money from accounts:

UPDATE Accounts SET balance = balance - 2000 WHERE name = Alice;
UPDATE Accounts SET balance = balance + 2000 WHERE name = Bob;

What would happen if the system crashes between the two updates?

February 20th 2023, Lecture 12 TDA357/DIT621 4/28



Transactions: Atomicity

The solution is to wrap the updates in a transaction.

The DBMS then guarantees that transactions are atomic, that is, we get
an all-or-nothing result: all updates are performed or none of them are!

BEGIN;
UPDATE Accounts SET balance = balance - 2000 WHERE name = Alice;
UPDATE Accounts SET balance = balance + 2000 WHERE name = Bob;

COMMIT;

Note: By default each SQL statement is treated as a separate atomic
transaction.

In particular, triggers and cascading are executed as part of an atomic
transaction.

February 20th 2023, Lecture 12 TDA357/DIT621 5/28



Transactions: Explicit Rollback

At any time during a transaction we can explicitly ROLLBACK.

This immediately ends the ongoing transaction and reverts all changes
done since the transaction started.

We could then have an application (for example in JDBC) doing
something like:

BEGIN transaction....
... do some stuff/modifications ...
IF <everything has gone fine>

COMMIT
ELSE

ROLLBACK

February 20th 2023, Lecture 12 TDA357/DIT621 6/28



Concurrent Transactions

What if at the same time Bob wants to transfer money to Carl?

UPDATE Accounts SET balance = balance - 2000 WHERE name = Alice;
UPDATE Accounts SET balance = balance + 2000 WHERE name = Bob;

UPDATE Accounts SET balance = balance - 1000 WHERE name = Bob;
UPDATE Accounts SET balance = balance + 1000 WHERE name = Carl;

We expect

name balance

Alice 30000

Bob 20000

Carl 1000

name balance

Alice 28000

Bob 21000

Carl 2000

But what would happen if transactions are not atomic?
February 20th 2023, Lecture 12 TDA357/DIT621 7/28



Update = Read + Write

Under the hood, each of the following updates

UPDATE Accounts SET balance = balance - 2000 WHERE name = Alice;
UPDATE Accounts SET balance = balance + 2000 WHERE name = Bob;

are likely implemented as two database accesses:

b1 := READ balance FROM Accounts WHERE name = Alice;
WRITE balance = b1 - 2000;
b2 := READ balance FROM Accounts WHERE name = Bob;
WRITE balance = b2 + 2000;

February 20th 2023, Lecture 12 TDA357/DIT621 8/28



Interleaved Access

RB1 : b1 := READ balance FROM Accounts WHERE name = Alice;
WB1 : WRITE balance = b1 - 2000;
RB2 : b2 := READ balance FROM Accounts WHERE name = Bob;
WB2 : WRITE balance = b2 + 2000;
RB3 : b3 := READ balance FROM Accounts WHERE name = Bob;
WB3 : WRITE balance = b3 - 1000;
RB4 : b4 := READ balance FROM Accounts WHERE name = Carl;
WB4 : WRITE balance = b4 + 1000;

Selected interleaved access [A: 30000, B: 20000, C: 1000]
(RB1, WB1, RB2, WB2, RB3, WB3, RB4, WB4) [A: 28000, B: 21000, C: 2000]
(RB1, WB1, RB2, RB3, WB2, WB3, RB4, WB4) [A: 28000, B: 19000, C: 2000]
(RB1, WB1, RB3, RB2, WB3, WB2, RB4, WB4) [A: 28000, B: 22000, C: 2000]
(RB1, RB3, WB1, WB3, RB2, RB4, WB2, WB4) [A: 28000, B: 21000, C: 2000]
(RB3, RB1, WB3, WB1, RB4, RB2, WB4, WB2) [A: 28000, B: 21000, C: 2000]
(RB3, WB3, RB1, RB4, WB1, WB4, RB2, WB2) [A: 28000, B: 21000, C: 2000]
(RB3, WB3, RB4, RB1, WB4, WB1, RB2, WB2) [A: 28000, B: 21000, C: 2000]
(RB3, WB3, RB4, WB4, RB1, WB1, RB2, WB2) [A: 28000, B: 21000, C: 2000]

February 20th 2023, Lecture 12 TDA357/DIT621 9/28



Serialisability

Two processes/transactions P1 and P2 run in serial if one ends before the
other starts.

(Note that this could mean that P1 competely runs before P2 but also that P2

completely runs before P1!)

On the other hand, they are serialisable if their outcome is the same as if
they were run in serial.

February 20th 2023, Lecture 12 TDA357/DIT621 10/28



ACID Properties

Database transactions are expected to have the following properties:
(coined in 1983 as a golden standard for Database transaction properties.)

Atomicity: Transactions are atomic (all-or-nothing).

Consistency: Database constraints are preserved.

Isolation: Concurrent transactions do not interfere with each other.

Durability: Once a transaction has been committed, the changes are
permanent, not matter what (for example a system crash).

Consistency and durability are dealt with “under the hood” by most
DBMS;

Doing changes within BEGIN/COMMIT gives us atomicity;

Isolation is the tricky part and what caused problems in our example.
Just running all transactions in a serial way is not a realistic solution!

February 20th 2023, Lecture 12 TDA357/DIT621 11/28



Interference Problems: Dirty Read

When one transaction is allowed to read a value before the value has been
committed.

order transaction 1 transaction 2

1 INSERT v
2 READ v
3 ROLLBACK

Transaction 1 performs a dirty read: reads a value that never
actually existed;

There is a violation of the atomicity of transaction 2.

February 20th 2023, Lecture 12 TDA357/DIT621 12/28



Interference Problems: Non-repeatable Read

When one transaction reads the same data twice and gets different results
because of another concurrent transaction.

order Transaction 1 Transaction 2

1 READ v
2 UPDATE v = v’; COMMIT
3 READ v

Note: Similar when Transaction 2 deletes v instead of just updating it.

Transaction 1 performs a non-repeatable read;

There is a violation of the atomicity of transaction 1 since it can
observe changes taking place outside.

February 20th 2023, Lecture 12 TDA357/DIT621 13/28



Interference Problems: Phantom

The same query gives different results beacuse of data committed in
another concurrent transaction.

order Transaction 1 Transaction 2

1 SELECT * FROM A
2 INSERT INTO A ... ; COMMIT
3 SELECT * FROM A

Note: In non-repeatable reads, rows could have changed or disappeared.

Transaction 1 has the phantom problem;

There is a violation of the atomicity of transaction 1 since it can
observe changes taking place outside.

February 20th 2023, Lecture 12 TDA357/DIT621 14/28



Isolation Levels

The isolation level decides how other processes are allowed to interfere.

START TRANSACTION isolation level;

Allowed isolations vs level of isolation (from highest to lowest):

Dirty reads Non-repeatable reads Phantoms

SERIALIZABLE NO NO NO
REPEATABLE READ NO NO YES
READ COMMITTED NO YES YES
READ UNCOMMITTED YES YES YES

Recall:

Dirty read: Reads data that is later rolled back.

Non-repeatable read: Reads data that is deleted/modified during transaction.

Phantom: New rows appear in a query result during transaction.

February 20th 2023, Lecture 12 TDA357/DIT621 15/28



Isolation Levels: Summary

SERIALIZABLE: I accept no interference from other transactions.
Default in SQL.

REPEATABLE READ: I accept that others make changes as long as they
do not modify or delete data I have already looked at.

Example: When I need to update the price of some products.

READ COMMITTED: I accept that others make any changes to the
database.
Default in PostgreSQL.

Example: Removing half of the money in each back account; each

update does not depend on other data.

READ UNCOMMITTED: I accept that some data I get might actually
never have been in the database (!!).
Not supported in PostgreSQL .

February 20th 2023, Lecture 12 TDA357/DIT621 16/28

https://www.postgresql.org/
https://www.postgresql.org/


Transactions with JDBC in Java (questions on this in the lab session!)

To use transactions run (only once) conn.setAutoCommit(false);

where conn is your connection object.

End each transaction with conn.commit(); or conn.rollback();,
which also starts a new transaction.

To set the isolation level, at the start of the transaction, use
conn.setTransactionIsolation(Connection.<isolation level>).

If the connection closes without committing, the transaction is rolled back.

See the corresponding sections in the JDBC manual.

February 20th 2023, Lecture 12 TDA357/DIT621 17/28

https://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html


Authorization and Privileges

Every connection to a database (including from applications) is made by a
user.

Users should not be allowed to do everything.
They should only be allowed to do the things they need for their purpose.

If an attacker gets hold of a username/password, the damage they can do
will be limited by the privileges granted to that user.

February 20th 2023, Lecture 12 TDA357/DIT621 18/28



Databases vs File Systems Privileges/Permissions

In a Unix files system we have

Three different permissions on files and directories:
read (r), write (w), execute (x);

Permissions on three levels: for the owner, for users in the same
group, for everyone else.

In an SQL database we have:

Privileges on schema elements (tables, views, triggers, etc);

Nine different privileges (SELECT, INSERT, UPDATE, DELETE,
. . . );

Privileges are controlled separately for each user;

Privileges can also be granted to roles that are given to users.

February 20th 2023, Lecture 12 TDA357/DIT621 19/28



Granting and Revoking Privileges

Initially, all objects (tables, views, etc) are owned by the user who created
them.

The owner has all privileges on his/her objects, other user have no access
at all.

Privileges can be granted and revoked:

The owner can grant certain privileges to other users;

One can even grant the option to grant privileges to other users;

Granted privileges can be revoked;

Only the owner of a table can drop the table (and similarly for other
schema elements).
This is a privilege that cannot be granted to other users.

February 20th 2023, Lecture 12 TDA357/DIT621 20/28



Roles

Users can be given roles (which are like groups in Unix).

Privileges can be granted to roles.

This can simplify the administration of privileges.

Example: The roles in a student portal could be: student, teacher, study administrator.

February 20th 2023, Lecture 12 TDA357/DIT621 21/28



Granting and Revoking Privileges in Action

Allows two users/roles to SELECT from Products:

GRANT SELECT ON Products TO webshop users, marketing;

Allows one user to SELECT, DELETE and INSERT on Registrations:

GRANT SELECT, DELETE, INSTERT ON Registrations TO study admin;

Restricts SELECT privilege to certain attributes
(can also be done for INSERT and UPDATE privileges):

GRANT SELECT (name, email, office) ON Employees TO PUBLIC;

Grants all privileges! (not to be used too often :-):

GRANT ALL PRIVILEGES ON ...;

Removes UPDATE and DELETE privileges from a user in Transfers:

REVOKE UPDATE, DELETE ON Transfers FROM staff;

Grants a privilege and passes the right to grant the privilege to others:

GRANT UPDATE (salary) ON Employees TO Bob WITH GRANT OPTION;

February 20th 2023, Lecture 12 TDA357/DIT621 22/28



Less Common Privileges

EXECUTE: Allows users to execute a function/procedure.

REFERENCES (<list of column names>):
Allows users to create foreign keys.
(Rarely granted, since foreign keys are usually part of the design)

TRIGGER (<list of column names>):
Allows users to create triggers.
(Rarely granted for the same reason as above.)

February 20th 2023, Lecture 12 TDA357/DIT621 23/28



Indexes

Consider a table/relation with 50000 rows and the schema

Employees (name, email, office, salary)

How fast are these queries?

SELECT email FROM Employees WHERE name = ’Ana’;

SELECT name FROM Employees WHERE office = ’6116’;

Finding rows by using primary keys is expected to be fast;

This is because the DBMS automatically creates an index for the
primary key;

Finding rows based on the values of other attributes might require all
rows to be retrieved and compared.

February 20th 2023, Lecture 12 TDA357/DIT621 24/28



What is an Index?

An index is a data structure that allows values to be found quickly.

PostgreSQL uses B-Trees for indexes by default.
It is also possible to use hash tables.

A Self-balancing tree (B-tree) is a data structure that keeps data sorted and allows
searches, sequential access, insertions, and deletions in logarithmic time.

They are a generalisation of binary search trees, allowing nodes to have more than
two children.

They are optimised for systems that read and write large blocks of data.

February 20th 2023, Lecture 12 TDA357/DIT621 25/28

https://www.postgresql.org/


What is Indexed?

There is always an index for the primary key.

An index is also added for attributes with a UNIQUE constraints.

Additional indexes can be added and dropped.
Not part of standard SQL though.

CREATE INDEX index name ON Table name (attribute1, ..., attributen);

DROP INDEX index name;

February 20th 2023, Lecture 12 TDA357/DIT621 26/28



Advantages and Disadvantages

Advantages:

Quicker to find rows matching the values when using WHERE;

Easier to check that uniqueness constrains are still valid in INSERT
and UPDATE operations;

Faster to find matching rows in JOIN operations;

Produce sorted/grouped output without sorting when using
ORDER BY, GROUP BY;

Certain comparisons can be optimised using indexes.

Disadvantages:

Extra work (time) is needed to update the index when data is
inserted, updated or deleted;

Storing the index takes extra space (sometime more than the actual table!).

February 20th 2023, Lecture 12 TDA357/DIT621 27/28



Overview of Next Lecture

Relational algebra;

Correspondence between SQL and relational algebra;

A glance into query optimisation.

Reading:

Book: chapters 2.4–2.5, 5 and 16.2–16.3

Notes: chapter 6.1–6.5

February 20th 2023, Lecture 12 TDA357/DIT621 28/28


