Databases

TDA357/DIT621- LP3 2023

Lecture 13
Ana Bove
(much of the material is based on material from both Thomas Hallgren and Jonas Duregård)

February 23rd 2023

Recall Last Lecture

- Transactions:
- BEGIN/COMMIT or ROLLBACK;
- ACID properties: atomicity, consistency, isolation and durability;
- Interference problems: dirty read, non-repeatable read, phantom;
- Isolation levels: serializable, repeatable read, read committed, read uncommitted;
- Authorisation and privileges:
- Privileges can be granted and revoked to users/roles;
- Most common privileges: SELECT, INSERT, UPDATE and DELETE;
- Indexes:
- DBMS defines indexes on primary keys and unique attributes;
- Users can define (and drop) other indexes: advantages and disadvantages on this!

Overview of Today's Lecture

- Relational algebra;
- Correspondence between SQL and relational algebra;
- A glance into query optimisation.

Recall (Lecture 6): Relations, Relation Schemas and Tables

- A relation R is a subset of the cartesian product of two or more sets $T_{1}, T_{2}, \ldots, T_{n}$:

$$
R \subseteq T_{1} \times T_{2} \times \cdots \times T_{n}
$$

- A relation schema $R\left(a_{1}, \ldots, a_{n}\right)$ can be augmented with the domain/type of each attribute $R\left(a_{1}: T_{1}, \ldots, a_{n}: T_{n}\right)$;
- The relation signature of the relation R is then the corresponding cartesian product $T_{1} \times \cdots \times T_{n}$;
- Given a relation schema $R\left(a_{1}, \ldots, a_{n}\right)$ with signature $T_{1} \times \cdots \times T_{n}$:
- A table for the schema $R\left(a_{1}, \ldots, a_{n}\right)$ is a subset of the cartesian product $T_{1} \times \cdots \times T_{n}$;
- A row in the table is an element of the cartesian product $t \in T_{1} \times \cdots \times T_{n}$.

Algebra

Definition: (Wikipedia) Algebra is the study of mathematical symbols and the rules for manipulating these symbols.

Broad field of mathematics, going from elementary equation solving (elementary algebra, linear algebra) to the study of abstractions such as groups, rings, lattices... (abstract algebra).

In an algebra we have set of values, operations on those values, and formulas built from the values and the operators.

Example: Natural numbers with addition and multiplication form an algebra.
Example: Boolean algebra consists of the two Boolean values and the operators \vee, \wedge, \ldots.
Note: Observe that both the Natural numbers and Booleans are closed under those operations (the result of the operation is also in the set).

Relational Algebra

Definition: Relational algebra is a theory that uses algebraic structures for modeling data and defining queries on the data.

A concise mathematical notation in which we can express relations and queries.

Main advantages:
Reasoning: We can use mathematics to prove that our queries do what we intend them to do.
Simplification: Using known algebraic laws one can simplify complicated relational algebra expressions (queries).
Optimisation: Simplification can make queries faster.

SQL Query Processing

A DBMS processes a query in several steps:
Lexing: The input string is converted into a sequence of tokens.
Parsing: The sequence of tokens is converted into a(n SQL) syntax tree.

Type checking: The syntax tree is checked semantically.
Logical query plan generation: The syntax tree is converted into a relational algebra expression.
Optimisation: The relational algebra expression is converted into a more efficient relational algebra expression.
Which of two different queries solving the same problem is more efficient (partly) depends on what the DBMS does here.
Physical query plan generation: The more efficient expression is converted into a sequence of algorithm calls.
Execution: The physical query plan is executed and produces a result.

Back to Relational Algebra

What are the values and operations in this algebra?

The values are relations (the tables in the database).
This means the relation schema (name of the relation and its attributes) and the (labelled) tuples in the relation (rows in the table).

The operations are the different things we can do on a relation. Example: Select, group by, order, ...

Each operation returns a new relation.

Note: When working with relational algebra, we focus on the schema, not the actual tuples.

Do we Work with Sets, Bags, Lists or Arrays?

	No order	Ordered
No duplicates	Sets	Ordered sets
Duplicates	Multisets/bags	Lists or arrays

In sets/relations: Order and duplication is irrelevant.
In tables: Order and duplication make a difference:

- SQL has DISTINCT and ORDER BY;
- Set operations UNION, INTERSECT and EXCEPT discard duplicates ...
- ... but UNION ALL, INTERSECT ALL and

EXCEPT ALL preserve duplicates;

- Primary keys and unique constrains prevent duplicates ...
- ... but the result of a query can still contain duplicates.

Relational Algebra: Basic Notation and Correspondences

Concept	Relational algebra	Set theory	SQL
domain of attribute values		T	type
cartesian products of sets	$T_{1} \times \ldots \times T_{n}$	$\left\{\left\langle t_{1}, \ldots, t_{n}\right\rangle \mid t_{i} \in T_{i}\right\}$	relation schema
relation	R	$R \subseteq T_{1} \times \ldots \times T_{n}$	table
tuple	$\left\{a=t_{1}, \ldots, k=t_{n}\right\}$	$\left\langle t_{1}, \ldots, t_{n}\right\rangle$	row
label	a		attribute name
component	$t . a$	$\pi_{i(a)} t, t_{i(a)}$	value of attribute
	$\left\{t_{i} \mid\left\langle\ldots, t_{i}, \ldots\right\rangle \in R\right\}$	column	

Relational Schema in this Lecture

- Countries and their currency values:

Currencies (code, name, value)

Countries (name, abbr, capital, area, population, continent, currency) currency \rightarrow Currencies.code

- Countries with their capitals and currencies:

Capitals (country, capital) country \rightarrow Countries.name

> CurrencyCodes (country, currency) country \rightarrow Countries.name

- Students and their grades:

```
Students (idnr, name)
```

Grades (student, course, grade) student \rightarrow Students.idnr course \rightarrow...

From SQL to Relational Algebra: Basic Queries

Table names can be used directly.

SQL
 SELECT projection FROM Table WHERE condition;

Relational Algebra

$$
\pi_{\text {projection }}\left(\sigma_{\text {condition }}(\text { Table })\right)
$$

π for projections of components
σ for selection of tuples/elements

Note: Here condition is a Boolean-expression, not an SQL sub-query/relational algebra expression!

Examples: Basic Queries in Relational Algebra

SQL

Relational Algebra

SELECT * FROM Countries;

Selecting rows:
SELECT * FROM Countries
WHERE abbr = 'UY';

Countries

Projection:
SELECT capital FROM Countries WHERE abbr = 'UY';

$$
\begin{aligned}
& \pi_{\text {capital }} \\
& \qquad\left(\sigma_{\mathrm{abbr}=^{\prime} \mathrm{UY}}(\text { Countries })\right)
\end{aligned}
$$

Expressions:

SELECT capital, population/area FROM Countries WHERE abbr = 'UY';

$$
\begin{aligned}
& \pi_{\text {capital, population/area }} \\
& \quad\left(\sigma_{\mathrm{abbr}=^{\prime} \mathrm{UY}^{\prime}}(\text { Countries })\right)
\end{aligned}
$$

Note: From now on, we might omit some (,) when we break into different lines.

From SQL to Relational Algebra: Renaming

SQL

Renaming columns:
SELECT name AS country, population/area AS density
FROM Countries
WHERE continent = 'EU';

Relational Algebra

AS becomes \rightarrow :


```
    \sigma continent='EU'
    Countries
```

ρ for renaming tables:

```
\pi}\mp@subsup{|}{\mathrm{A.abbr }}{}(\mp@subsup{\sigma}{\mathrm{ A.name='Sweden'}}{}(\mp@subsup{\rho}{\textrm{A}}{\mathrm{ A Countries }})
```

ρ can be also be used to give a new schema (renaming tables and attributes)

```
\pi_..,A.\mp@subsup{a}{i}{},\ldots
    \sigma..,A.\mp@subsup{\textrm{a}}{\textrm{j}}{}=\ldots}(\mp@subsup{\rho}{\textrm{A}<\mp@subsup{\textrm{a}}{1}{},\mp@subsup{\textrm{a}}{2}{},..>}{
```


From SQL to Relational Algebra: Sorting

SQL

Sorting on a selected attribute:

SELECT name, capital, FROM Countries ORDER BY name;

Descending:

```
SELECT name, capital, FROM Countries ORDER BY name DESC;
```

Sorting on a non-selected attribute:

SELECT name, capital, FROM Countries ORDER BY area;

Relational Algebra

τ for sorting:
$\pi_{\text {name, capital }}\left(\tau_{\text {name }}\right.$ Countries $)$
$\tau_{\text {name }}\left(\pi_{\text {name }}\right.$, capital Countries $)$
$\pi_{\text {name, capital }}\left(\tau_{\text {-name }}\right.$ Countries $)$
$\tau_{\text {-name }}\left(\pi_{\text {name, capital }}\right.$ Countries $)$

One cannot sort by an attribute that has already been discarded by a projection:
$\pi_{\text {name, capital }}\left(\tau_{\text {area }}\right.$ Countries $)$

From SQL to Relational Algebra: Duplicates

Recall: set vs. bag semantics!

SQL

SELECT currency, FROM Countries;

Relational Algebra

Might contain duplicates:
$\pi_{\text {currency }}$ Countries
δ for removing duplicates:

$$
\delta\left(\pi_{\text {currency }} \text { Countries }\right)
$$

From SQL to Relational Algebra: Grouping and Aggregations

SQL

```
SELECT currency, COUNT(name),
```

SELECT currency, COUNT(name),
FROM Countries
FROM Countries
GROUP BY currency;

```
GROUP BY currency;
```

Aggregations are done in γ !
Rename to use the result elsewhere.

```
SELECT currency, SUM(population),
FROM Countries
GROUP BY currency
HAVING COUNT(name) > 1;
```

```
\pi
    \sigmacnt>1
    \gammacurrency, SUM(population) }->\mathrm{ sum_pop,
                                    COUNT(name)}->\textrm{cnt
Countries
```

Note: Both WHERE cond and HAVING cond become $\sigma_{\text {cond }}$.

From SQL to Relational Algebra: Cartesian Products

SQL

Full cartesian product:

SELECT Countries.name, Currencies.name, FROM Countries, Currencies;

Theta join:
SELECT Countries.name, Currencies.name,
FROM Countries, Currencies WHERE currency = code;

Relational Algebra

Not often what we need...

$\pi_{\text {Countries.name, Currencies.name }}$

Countries \times Currencies

From SQL to Relational Algebra: Natural and Inner Joins

SQL

Natural join:
SELECT capital, currency, FROM Capitals NATURAL JOIN CurrencyCodes;

Inner join:

SELECT Countries.name, Currencies.name,
 FROM Countries JOIN Currencies ON currency = code;

Relational Algebra

$\pi_{\text {capital }}$ currency

Capitals \bowtie CurrencyCodes

From SQL to Relational Algebra: Outer Joins

SQL

Relational Algebra

SELECT Countries.name, Currencies.name,
FROM Countries
RIGHT OUTER JOIN Currencies
ON currency = code;

SELECT Countries.name, Currencies.name,
FROM Countries
LEFT OUTER JOIN Currencies
ON currency = code;

SELECT Countries.name, Currencies.name,
FROM Countries
FULL OUTER JOIN Currencies
ON currency = code;

Right outer join:
$\pi_{\text {Countries.name, Currencies.name }}$
Countries $\bowtie_{\text {currency=code }}^{O R}$ Currencies

Left outer join:
$\pi_{\text {Countries.name, }}$ Currencies.name
Countries $\bowtie_{\text {currency=code }}^{O L}$ Currencies

Full outer join:
$\pi_{\text {Countries.name, Currencies.name }}$
Countries $\bowtie_{\text {currency=code }}^{O}$ Currencies

What about Correlated Queries?

Consider the query:

```
SELECT name
FROM Students AS S
WHERE 4< (SELECT AVG(grade) FROM Grades WHERE student = S.idnr)
```

The correlation needs to be replaced with a join (or cartesian product and corresponding select).

```
\mp@subsup{\pi}{\mathrm{ name }}{}(\mp@subsup{\sigma}{4<\mathrm{ average }}{}(\mp@subsup{\gamma}{\mathrm{ student,name,AVG(grade) }->\mathrm{ average }}{}(\mathrm{ Grades }\mp@subsup{\bowtie}{\mathrm{ idnr=student }}{\mathrm{ Students }})))
```

From the join, group by students and name, and compute the average of the grades of each student, select those with an average of at least 4, finally project the name.

Back to Grouping in Relational Algebra

Are these the same query?

Groups by student
id and name; name available for projection

$$
\begin{aligned}
& \pi_{\text {name, passed }} \\
& \gamma_{\text {student, name, }} \text { Count }(*) \rightarrow \text { passed } \\
& \sigma_{\text {grade } \geqslant 3 \wedge \text { idnr }=\text { student }} \text { (Students } \times \text { Grades) }
\end{aligned}
$$

Groups only by student; needs a join to project name

$\pi_{\text {name, passed }}$

$\left(\gamma_{\text {student }, \operatorname{COUNT}(*)}\right) \rightarrow$ passed
$\left(\sigma_{\text {grade }} \geqslant 3 \wedge\right.$ idnr $=$ student $($ Students \times Grades $\left.)\right)$ $\bowtie_{\text {student=idnr }}$ Students)

Note: Since we have the FD student \rightarrow name, these queries are the same. Otherwise they might not be since the result of grouping by (student, name) might be different than grouping by just student!

What about NOT IN or NOT EXISTS?

One needs to try to understand the query in terms of sets, and use set operations instead.

Example: Consider the query that selects students that have no grades:

```
SELECT idnr, name
FROM Students
WHERE idnr NOT IN (SELECT student FROM Grades)
```

We can use set difference in relational algebra to obtain this result:

$$
\pi_{\text {idnr,name }}\left(\text { Students } \bowtie_{\text {idnr }=\text { st }}\left(\rho_{\text {NoGrades }\langle\text { st }\rangle}\left(\pi_{\text {idnr }} \text { Students }-\pi_{\text {student }} \text { Grades }\right)\right)\right)
$$

The result of (π_{idnr} Students $-\pi_{\text {student }}$ Grades) is a relation consisting of "1-tuples". We give a new name to the information (table and attribute).
We join to retrieve the rest of the information of the students to project their name.

Relation Algebra: Set Operation

Concept	Relational algebra	Set theory	SQL
cartesian prod- ucts of relations	$S \times R$	$\{\langle x, . ., u, .\rangle$. $\langle x, ..\rangle \in S,\langle u, ..\rangle \in R\}$	FROM S, R
union with duplicates	$S \cup R$	$\{t \mid t \in S$ or $t \in R\}$ OBS: bags!	S UNION ALL R
union	$\delta(S \cup R)$	$\{t \mid t \in S$ or $t \in R\}$	S UNION R
intersection with duplicates	$S \cap R$	$\{t \mid t \in S$ and $t \in R\}$ OBS: bags!	S INTERSECT ALL R
intersection	$\delta(S \cap R)$	$\{t \mid t \in S$ and $t \in R\}$	S INTERSECT R
difference with duplicates	$S-R$	$\{t \mid t \in S$ and $t \notin R\}$ OBS: bags!	S EXCEPT ALL R
difference	$\delta(S-R)$	$\{t \mid t \in S$ and $t \notin R\}$	S EXCEPT R

Note: Recall "schemas" need to be compatible for some of the set operations to work!

Relation Algebra: Summary of Correspondences

\begin{tabular}{|c|c|c|c|}
\hline Concept \& Rel algebra \& Set theory \& SQL

\hline projection \& $\pi_{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{k}} R$ \& $$
\begin{aligned}
& \langle t . a, t . b, \ldots, t . k| \\
& t \in R\rangle
\end{aligned}
$$ \& SELECT a, b, .., k

\hline selection \& $$
\begin{aligned}
& \sigma_{\mathrm{C}} R \\
& \sigma_{\mathrm{c}} R
\end{aligned}
$$ \& $\{t \in R \mid C\}$ \& WHERE C HAVING C

\hline theta join \& $S \bowtie_{C} R=\sigma_{C}(S \times R)$ \& $\{t \in S \times R \mid C\}$ \& S INNER JOIN R ON C

\hline outer join \& $$
\begin{aligned}
& S \bowtie_{C}^{O} R \\
& S \bowtie_{C}^{O L} R \\
& S \bowtie_{C}^{O R} R
\end{aligned}
$$ \& a

\cdots

\ldots \& | S FULL OUTER JOIN R |
| :--- |
| ON C |
| LEFT OUTER JOIN |
| RIGHT OUTER JOIN |

\hline natural join \& $S \bowtie R$ \& \ldots \& S NATURAL JOIN R

\hline renaming \& $$
\begin{aligned}
& \mathrm{a} \rightarrow \mathrm{~b} \\
& \rho_{\mathrm{A}} R
\end{aligned}
$$ \& - \& AS

\hline new schema \& $\rho_{\mathrm{A}<\mathrm{a}, \ldots, \mathrm{k}}>\mathrm{R}$ \& - \& -

\hline removing duplicates \& δR \& - \& DISTINCT

\hline sorting \& $\tau_{a} R$ \& - \& ORDER BY a

\hline grouping \& $\gamma_{a} R$ \& - \& GROUP BY a

\hline
\end{tabular}

Example: From Problem to Relational Algebra

Select the name of all students that have passed at least 2 courses.

Students (idnr, name)
Grades (student, course, grade) student \rightarrow Students.idnr course \rightarrow...

- Group first, join later: select passed courses in Grades, group by students and count passed course per student, now do the join, select entries where at least 2 courses are passed and project student names.

```
\pi
    \mp@subsup{\gamma}{\mathrm{ student,CouNT(*) }->\mathrm{ passed }}{}(\mp@subsup{\sigma}{\mathrm{ grade }\geqslant3}{}\mathrm{ Grades)))})
```

- Join first, group later: from the join, select passed courses, group by students and names, and count passed courses per student, select entries where at least 2 courses are passed and project student names.

$$
\begin{array}{r}
\pi_{\text {name }}\left(\sigma _ { \text { passed } \geqslant 2 } \left(\gamma _ { \text { student } , \text { name } , \text { CounT } (*) \rightarrow \text { passed } } \left(\sigma_{\text {grade }} \geqslant 3 \wedge \text { idnr }=\right.\right.\right.\text { student } \\
\\
(\text { Students } \times \text { Grades })))) \\
\hline
\end{array}
$$

Example: From SQL to Relational Algebra

A query with almost everything:

```
SELECT a1, MAX(a2) AS max
FROM T1, T2
WHERE a3 = 5
GROUP BY a1, a3
HAVING COUNT(*) > 10
ORDER BY a1 DESC;
```

A relational algebra expression for it:

$$
\tau_{-\mathrm{a} 1}\left(\pi_{\mathrm{a} 1, \max }\left(\sigma_{\mathrm{cnt}}>10\left(\gamma_{\mathrm{a} 1, \mathrm{a} 3, \mathrm{MAX}(\mathrm{a} 2) \rightarrow \text { max }, \operatorname{CouNT}(*) \rightarrow \mathrm{cnt}}\left(\sigma_{\mathrm{a} 3=5}(\mathrm{~T} 1 \times \mathrm{T} 2)\right)\right)\right)\right)
$$

From the join, select entries where a3 $=5$.
Group by a1, a3 and compute number of elements and MAX(a2) per group. Select entries where the count is at least 10.
Project a1 and $\operatorname{MAX}(\mathrm{a} 2)$ for those entries. Sort the result descending in a1.

Sanity Check (1)!

Given this schema, is the relational algebra query below correct?

Students (idnr, name)
Grades (student, course, grade) student \rightarrow Students.idnr course \rightarrow...

```
\mp@subsup{\pi}{\mathrm{ idnr }}{}(\mp@subsup{\sigma}{\mathrm{ passed }}{\mathrm{ v2 }}\\mathrm{ idnr=student }}(\mathrm{ Students }\times\mp@subsup{\gamma}{\mathrm{ student,COUNT(* })->\mathrm{ passed }}{}(\mp@subsup{\sigma}{\mathrm{ grade }\geqslant3}{}\mathrm{ Grades }))
```

Let us sanity check the expression by computing the schema bit by bit!

- $\sigma_{\text {grade } \geqslant 3}$ Grades : (student, course, grade)
- $\gamma_{\text {student, Count }(*) \rightarrow \text { passed }}\left(\sigma_{\text {grade } \geqslant 3}\right.$ Grades) : (student, passed)
- Students $\times \gamma_{\text {student }, \text { Count }(*) \rightarrow \text { passed }}\left(\sigma_{\text {grade }} \geqslant 3\right.$ Grades) : (idnr, name, student, passed)
- $\sigma_{\text {passed } \geqslant 2 \wedge \text { idnr }=\text { student }}\left(\right.$ Students $\times \gamma_{\text {student, COUNT }(*) \rightarrow \text { passed }}\left(\sigma_{\text {grade }} \geqslant 3\right.$ Grades $)$): (idnr, name, student, passed)
- $\pi_{\text {idnr }}\left(\sigma_{\text {passed }} \geqslant 2 \wedge\right.$ idnr $=$ student $\left(\right.$ Students $\times \gamma_{\text {student }, \text { Count }(*) \rightarrow \text { passed }}\left(\sigma_{\text {grade }} \geqslant 3\right.$ Grades $\left.\left.)\right)\right)$: (idnr)

Sanity Check (2)!

Given this schema, is the relational algebra query below correct?

Students (idnr, name)
Grades (student, course, grade) student \rightarrow Students.idnr course \rightarrow...

```
\mp@subsup{\pi}{\textrm{idnr}}{}(\mp@subsup{\sigma}{\textrm{cnt}\geqslant2}{}\geqslant2\wedge\textrm{idnr}=\mathrm{ student }\wedge grade \geqslant3 (Students }\times\mp@subsup{\gamma}{\mathrm{ student,Count (*) }->\textrm{cnt}}{\mathrm{ Grades })}
```

Let us sanity check the expression by computing the schema bit by bit!

- $\gamma_{\text {student, } \text { Count }(*) \rightarrow \text { cnt }}$ Grades: (student, cnt)
- Students $\times \gamma_{\text {student, Count }(*) \rightarrow \text { cnt }}$ Grades: (idnr, name, student, cnt)
- $\sigma_{\text {cnt }} \geqslant 2 \wedge$ idnr=student \wedge grade $\geqslant 3$ (Students $\times \gamma_{\text {student }, \text { count }(*) \rightarrow \text { cnt }}$ Grades): ERROR! There is no grade in the schema of the expression to be used by the σ operator in order to evaluate the condition!

Note: Make sure your expression is correct by performing a sanity check on it!

Some Algebraic Laws

These (and other) algebraic laws can be used for query simplification and/or optimisation.

Some laws generate a potentially infinite number of equivalent expressions for a query. Query optimization tries to find the best of those.

Some laws work with sets but not with bags!

Set-theoretic laws: | $R \bowtie S=S \bowtie R$ |
| :--- |
| $R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$ |

If applicable, associativity, commutativity, distributivity, idempotence of unions, intersections, products and joins.

Repeated projection: $\pi_{a_{1}, \ldots, a_{n}}\left(\pi_{b_{1}, \ldots, b_{m}} R\right)=\pi_{a_{1}, \ldots, a_{n}} R$
b_{1}, \ldots, b_{m} should be a plain projection, will not work if there is a rename that it is later projected.
a_{1}, \ldots, a_{n} should be a subset of b_{1}, \ldots, b_{m} for the expression to be correct.

Some Algebraic Laws (Cont.)

Some laws can dramatically reduce the number of rows in the results!

Repeated selection: $\sigma_{\mathcal{C}_{1}}\left(\sigma_{\mathcal{C}_{2}} R\right)=\sigma_{\mathcal{C}_{1} \wedge c_{2}} R$

Pushing duplicate elimination inside: $\begin{aligned} & \delta\left(\sigma_{C} R\right)=\sigma_{C}(\delta R) \\ & \delta(R \times S)=\delta(R) \times \delta(S)\end{aligned}$

Pushing selection inside cartesian products:
If C only uses
attributes in R_{1} :

$$
\sigma_{C}\left(R_{1} \times R_{2}\right)=\left(\sigma_{C} R_{1}\right) \times R_{2}
$$

If C_{1} only in R_{1} and C_{2} only in R_{2} :

$$
\sigma_{C_{1} \wedge C_{2}}\left(R_{1} \times R_{2}\right)=\left(\sigma_{C_{1}} R_{1}\right) \times\left(\sigma_{C_{2}} R_{2}\right)
$$

Note: See section 2 in chapter 16 of the book for more algebraic laws for improving queries!

Presentation

To make large relation algebra expressions more readable:

- Write them over several lines and use indentation to show the structure:

```
#
    ( }\mp@subsup{\sigma}{\mathrm{ A.name=B.capital}}{
        ( }\mp@subsup{\rho}{\textrm{A}}{}\mathrm{ Countries }\times\mp@subsup{\rho}{\textrm{B}}{}\mathrm{ Countries))
```

- Split them in to several named parts:

$$
\begin{aligned}
& R_{1}=\rho_{\mathrm{A}} \text { Countries } \times \rho_{\mathrm{B}} \text { Countries } \\
& R_{2}=\sigma_{\text {A.name }=\text { B.capital }} R_{1} \\
& \text { Result }=\pi_{\text {A.name }} R_{2}
\end{aligned}
$$

Final Remarks

- A basic SQL query (performing some projection, selection and cartesian product) is done "altogether" and produces a single result. In relational algebra, each operation results is a new relation.
- It is then important to keep track of what information is available after each step (see slide 28!).

Recall the expression ($\pi_{\text {idnr }}$ Students $-\pi_{\text {student }}$ Grades) in slide 22: it results in a relation with student's id as single information; to retrieve the rest of the information of students we needed to perform a join!

- The abstract syntax tree of a relational algebra expression can help you understanding the expression.
- Translating SQL to relational algebra, simplifying the expression and then translating it back to SQL can give a not too compact query!

Overview of Next Lecture

- Quiz with recap of all course! (Good if you have a separate device to answer the quiz than that you use to see the questions if you are on zoom.)

