Lecture 13

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Duregérd)

February 23rd 2023

o Transactions:

BEGIN/COMMIT or ROLLBACK;

o ACID properties: atomicity, consistency, isolation and durability;

o Interference problems: dirty read, non-repeatable read, phantom;

o Isolation levels: serializable, repeatable read, read committed, read
uncommitted;

o Authorisation and privileges:

o Privileges can be granted and revoked to users/roles;
o Most common privileges: SELECT, INSERT, UPDATE and DELETE;

o Indexes:
o DBMS defines indexes on primary keys and unique attributes;
o Users can define (and drop) other indexes: advantages and
disadvantages on this!

TDA357/DIT621

o Relational algebra;
o Correspondence between SQL and relational algebra;

o A glance into query optimisation.

TDA357/DIT621

o A relation R is a subset of the cartesian product of two or more sets
T1, TQ,..., Tni
RCTixTryx---xT,

o A relation schema R(a1,...,an) can be augmented with the
domain/type of each attribute R(a; : T1,...,an: Tp);

o The relation signature of the relation R is then the corresponding
cartesian product T7 X --- X Tp;

o Given a relation schema R(ay, ..., a,) with signature T3 X -+ x Tj:
o A table for the schema R(ay, ..., a,) is a subset of the cartesian
product Ty X --- X T,;
o A row in the table is an element of the cartesian product
te Ty x---x Tp.

TDA357/DIT621

Definition: (Wikipedia) Algebra is the study of mathematical symbols and
the rules for manipulating these symbols.

Broad field of mathematics, going from elementary equation solving (elementary
algebra, linear algebra) to the study of abstractions such as groups, rings, lattices...

(abstract algebra).

In an algebra we have set of values, operations on those values, and
formulas built from the values and the operators.

Example: Natural numbers with addition and multiplication form an algebra.
Example: Boolean algebra consists of the two Boolean values and the operators V, A,

Note: Observe that both the Natural numbers and Booleans are closed under those

operations (the result of the operation is also in the set).

TDA357/DIT621

Definition: Relational algebra is a theory that uses algebraic structures for
modeling data and defining queries on the data.

A concise mathematical notation in which we can express relations and
queries.

Main advantages:

Reasoning: We can use mathematics to prove that our queries do what
we intend them to do.

Simplification: Using known algebraic laws one can simplify complicated
relational algebra expressions (queries).

Optimisation: Simplification can make queries faster.

February 23rd 2023, Lecture 13 TDA357/DIT621

A DBMS processes a query in several steps:

Lexing: The input string is converted into a sequence of tokens.
Parsing: The sequence of tokens is converted into a(n SQL) syntax
tree.
Type checking: The syntax tree is checked semantically.
Logical query plan generation: The syntax tree is converted into a
relational algebra expression.

Optimisation: The relational algebra expression is converted into a more
efficient relational algebra expression.
Which of two different queries solving the same problem is more
efficient (partly) depends on what the DBMS does here.

Physical query plan generation: The more efficient expression is converted
into a sequence of algorithm calls.

Execution: The physical query plan is executed and produces a result.

February 23rd 2023, Lecture 13 TDA357/DIT621

What are the values and operations in this algebra?

The values are relations (the tables in the database).

This means the relation schema (name of the relation and its attributes) and the
(labelled) tuples in the relation (rows in the table).

The operations are the different things we can do on a relation.

Example: Select, group by, order, ...

Each operation returns a new relation.

Note: When working with relational algebra, we focus on the schema, not the actual
tuples.

TDA357/DIT621

| || No order | Ordered |
No duplicates || Sets Ordered sets
Duplicates Multisets/bags | Lists or arrays

In sets/relations: Order and duplication is irrelevant.

In tables: Order and duplication make a difference:

o SQL has DISTINCT and ORDER BY;

o Set operations UNION, INTERSECT and EXCEPT
discard duplicates ...

o ... but UNION ALL, INTERSECT ALL and
EXCEPT ALL preserve duplicates;

o Primary keys and unique constrains prevent duplicates ...

@ ... but the result of a query can still contain duplicates.

TDA357/DIT621

| Concept | Relational algebra | Set theory | sQL
domain of
attribute values T type
cartesian
products of sets | Ty X ... X T, {{t, ..., tn) | ti € Ti} relation schema
relation R RCTix..xT, table
tuple {a=t, ...k =t} | (tr,...,tn) row
label a attribute name
component t.a Ti(a)t, ti(a) value of attribute
{ti|(..,t,..) ER} column

February 23rd 2 cture 13 TDA357/DIT621

o Countries and their currency values:

[Currencies (code, name, value)]

Countries (name, abbr , capital, area, population, continent, currency)
currency — Currencies.code

o Countries with their capitals and currencies:

Capitals (country, capital)
country — Countries.name

CurrencyCodes (country, currency)
country — Countries.name

o Students and their grades:
(Students (idnr, name)]

Grades (student, course, grade)
student — Students.idnr
course — ...

February 23rd 2023, Lecture 13 TDA357/DIT621

Table names can be used directly.

SQL Relational Algebra
SELECT projection ‘
FROM Table
WHERE Condition; [7rprojection(Ucondition(Table))]

7 for projections of components

o for selection of tuples/elements

Note: Here condition is a Boolean-expression, not an SQL
sub-query/relational algebra expression!

February 23rd 2023, Lecture 13 TDA357/DIT621

SQL Relational Algebra

(SELECT * FROM Countries; ‘

Selecting rows:

SELECT * FROM Countries ‘ (7ane—rov (Countries)]
WHERE abbr = 'UY";

Projection:

SELECT capital FROM Countries ‘ Tcapital
WHERE abbr = 'UY"; (Tapbr="vy’ (Countries))

Expressions:

SELECT capital, population/area ‘ Tcapital, population/area
FROM Countries (0abbr='vy’ (Countries))
WHERE abbr = 'UY’;

Note: From now on, we might omit some (,) when we break into different lines.

February 23rd 2023, Lecture 13 TDA357/DIT621

SQL

Renaming columns:

SELECT name AS country,
population/area AS density
FROM Countries

WHERE continent = 'EU’;

Renaming tables:

SELECT A.abbr
FROM Countries AS A,
WHERE A.name = 'Sweden’;

p can be also be used to give a
new schema (renaming tables and
attributes)

Relational Algebra

AS becomes — :

—

Tname— country, population/area—>density

O continent='EU’

Countries

p for renaming tables:

* [Ta.abbr (04 name='sweden’ (04 CountrieS))]

... A.aj,...
U...,A.aj:... (pA<a1,a2,..> Table)

February 23rd 2023, Lecture

TDA357/DIT621

SQL

Sorting on a
selected attribute:

SELECT name, capital,
FROM Countries
ORDER BY name;

Descending:

SELECT name, capital,
FROM Countries
ORDER BY name DESC:;

Sorting on a
non-selected attribute:

SELECT name, capital,
FROM Countries
ORDER BY area;

February 23rd 2023, Lecture 13

Relational Algebra

T for sorting:
‘ [7Tname, capital (Tname Countries)]

[Tname (7rna.me, capital Countries)]

[Wname, capital (T—name Countries)]

—

[Tfname (7rna.me, capital Countries)]

One cannot sort by an attribute
that has already been discarded
by a projection:

[Wname, capital (Tarea Countries)]

TDA357/DIT621

Recall: set vs. bag semantics!

SQL Relational Algebra

Migh ntain li :
SELECT carrency, ight contain duplicates

FROM Countries; [ﬂ'currency Countries]

0 for removing duplicates:
SELECT DISTINCT currency,

FROM Countries; [5 (Trcurrency Coun‘tries)]

February 23rd 2023, Lecture 13 TDA357/DIT621

SQL

SELECT currency, COUNT(name),
FROM Countries
GROUP BY currency;

Relational Algebra

7 combines
SELECT and GROUP BY:

[Wcurrency, COUNT(name) Countries]

Aggregations are done in ~!
Rename to use the result elsewhere.

SELECT currency, SUM(population),
FROM Countries

GROUP BY currency

HAVING COUNT(name) > 1;

B

T currency, sum_pop
Ocnt>1
“Yeurrency, SUM(population)— sum_pop,
COUNT(name)—cnt
Countries

Note: Both WHERE cond and HAVING cond become ocong.

February 23rd 2023,

TDA357/DIT621

SQL

Full cartesian product:

SELECT Countries.name,
Currencies.name,
FROM Countries, Currencies;

Theta join:

SELECT Countries.name,
Currencies.name,

FROM Countries, Currencies

WHERE currency = code;

February 23rd 2023, Lecture 13

Relational Algebra

Not often what we need...

‘ TCountries.name, Currencies.name
Countries X Currencies

TCountries.name, Currencies.name
O currency=code

Countries X Currencies

TDA357/DIT621

SQL Relational Algebra

Natural join:

SELECT capital, currency,
FROM Capitals
NATURAL JOIN CurrencyCodes;

Tlcapital, currency
Capitals < CurrencyCodes

Inner join:

SELECT Countrles.name, TCountries.name, Currencies.name
Currencies.name, Countries Mcurrency=code Currencies
FROM Countries JOIN Currencies

ON currency = code;

February 23rd 2023, Lecture 13 TDA357/DIT621

SQL Relational Algebra

SELECT Countries.name,
Currencies.name,

FROM Countries ‘ TCountries.name, Currencies.name

RIGHT OUTER JOIN Currencies ' '

. R .
Countries Ddglrrency:code Currencies

Right outer join:

ON currency = code;

SELECT Countries.name,

: Left outer join:
Currencies.na me,

FROM Countries ‘ TCountries.name, Currencies.name
LEFT OUTER JOIN Currencies e '

Countries M&erency:code Currencies

ON currency = code;

SELECT Countries.name,

: Full outer join:
Currencies.name,

FROM Countries ‘ TCountries.name, Currencies.name
FULL OUTER JOIN Currencies e i

Countries mﬁmncymde Currencies

ON currency = code;

February 23rd 2023, Lecture 13

TDA357/DIT621

Consider the query:

SELECT name
FROM Students AS S
WHERE 4 < (SELECT AVG(grade) FROM Grades WHERE student = S.idnr)

The correlation needs to be replaced with a join (or cartesian product and
corresponding select).

[T'name (U4<average (’Ystudent ,name,AVG(grade)—raverage (GI' ades Didnr=student Students)))]

From the join, group by students and name, and compute the average of the grades of
each student, select those with an average of at least 4, finally project the name.

February 23rd 2023, Lecture 13 TDA357/DIT621

Are these the same query?

Groups by student

|d and name, T'name,passed
name available “Ystudent,name,COUNT()—>passed
Ograde>3 A idnr—student (Students X Grades)

for projection

Groups only Tnane,passed

by Student; ‘ (/Ystudent,COUNT(*)—)passed
needs a join to (Ograde>3 A 1anr=student (Students x Grades))
project name Dlstudent=idnr Students)

Note: Since we have the FD student — name, these queries are the same.
Otherwise they might not be since the result of grouping by
(student,name) might be different than grouping by just student!

February 23rd 202: e 13 TDA357/DIT621

One needs to try to understand the query in terms of sets, and use set
operations instead.

Example: Consider the query that selects students that have no grades:

SELECT idnr, name
FROM Students
WHERE idnr NOT IN (SELECT student FROM Grades)

We can use set difference in relational algebra to obtain this result:

[7T:’Ldnr,na.me(Students D>lidnr=st (pNoGrades(st) (Tridnr Students — Tstudent Grades)))]

The result of (7ianr Students — Tstudent Grades) is a relation consisting of “1-tuples”.
We give a new name to the information (table and attribute).

We join to retrieve the rest of the information of the students to project their name.

February 23rd 2023, Lecture 13 TDA357/DIT621

Concept Relational Set theory SQL

algebra
cartesian prod- | S X R {{x,..,u,..) | FROM S, R
ucts of relations (x,..) € S,(u,..) € R}
union with | SUR {t|t e Sort € R} | SUNION ALLR
duplicates OBS: bags!
union 0(SUR) {t|teSorteR} S UNION R
intersection SNR {t|teSandte R} | SINTERSECT ALL R
with duplicates OBS: bags!
intersection 0(SNR) {t|teSandte R} | SINTERSECT R
difference with | S—R {t|teSandt¢ R} | SEXCEPT ALLR
duplicates OBS: bags!
difference (S —R) {t|teSandt¢ R} | SEXCEPTR

Note: Recall “schemas” need to be compatible for some of the set operations to work!

February 23rd 2023, Lecture 13

TDA357/DIT621

| Concept | Rel algebra | Set theory | sQL |
projection Tab,...x R (t.a,t.b,....,t.k | | SELECT a, b, .., k
tER)
selection oc R {teR| C} WHERE C
ocR HAVING C
theta join Sxc R=0c(SxR) | {teSxR|C} | SINNER JOIN RON C
outer join Sx<2 R S FULL OUTER JOIN R
ON C
St R LEFT OUTER JOIN
S%R R RIGHT OUTER JOIN
natural join | SR S NATURAL JOIN R
renaming a—b — AS
R
new Pr<a,...x> R — —
schema
removing 0R — DISTINCT
duplicates
sorting Ta R — ORDER BY a
grouping Y2 R — GROUP BY a

February 23rd 2023, Lecture 13 TDA357/DIT621

Students (idnr, name)

Grades (student, course, grade)
student — Students.idnr

courses. course — ...

Select the name of all students
that have passed at least 2

o Group first, join later: select passed courses in Grades, group by students and
count passed course per student, now do the join, select entries where at least 2

courses are passed and project student names.

T'name (UpassedZZ A idnr=student (StUdent sX
“Ystudent ,COUNT(*)—passed (a'g'rade>3 Grades)))

o Join first, group later: from the join, select passed courses, group by students
and names, and count passed courses per student, select entries where at least 2

courses are passed and project student names.

Tname (Upassed>2 ('Ystudent ,name,COUNT(*)—>passed (Ugrade23 A idnr=student
(Students x Grades))))

February 23rd 2023, Lecture 13 TDA357/DIT621

A query with almost everything:

SELECT al, MAX(a2) AS max
FROM T1, T2

WHERE a3 = 5

GROUP BY al, a3

HAVING COUNT(*) > 10
ORDER BY al DESC;

A relational algebra expression for it:

[T—a1 ('/Tal,max(Ucnt>10(’Yai,a3,MAX(aQ)%max,COUNT(*)~>cnt(0a3:5(T]- X T2)))))]

From the join, select entries where a3 = 5.

Group by a1, a3 and compute number of elements and MAX(a2) per group.
Select entries where the count is at least 10.

Project a1l and MAX(a2) for those entries.

Sort the result descending in al.

February 23rd 2023, Lecture 13 TDA357/DIT621

Students (idnr, name)
Grades (student, course, grade)
student — Students.idnr

Given this schema, is the re-
lational algebra query below
correct? course — ...

[7ridnr (Opasseaz2 A 1anr=student (Students X Ysiudent,count(x)—passed (Tgrade>3 Grades)))]

Let us sanity check the expression by computing the schema bit by bit!

Ograde>3 Grades : (student, course, grade)

’Ystudent,CUUNT(*)—)passed(Ugrade23 Grades) . (StUdentypaSSed)

Students X Yetudent,count(+)—rpassed (Tgrade>s Grades) : (idnr,name, student, passed)

Upas sed>2 A idnr=student (StU-dent s X Ystudent ,COUNT(*)—>passed (Ugrade23 Grades)) :
(idnr, name, student, passed)

Q@ Tidnr (Upas sed>2 A idnr=student (StUdent 8 X “Ystudent,COUNT(*)—>passed (Ugrad923 Grade S))) :
(idnr)

February 23rd 2023, Lecture 13 TDA357/DIT621

Given this schema, is the re-
lational algebra query below
correct?

Students (idnr, name)

Grades (student, course, grade)
student — Students.idnr
course — ...

[7Tidnr (Ucnt22 A idnr=student A grade>3 (StUdent S X Ystudent ,COUNT(*)—>cnt Grades))]

Let us sanity check the expression by computing the schema bit by bit!

@ “Vstudent,couNT(x)—cat Grades : (student, cnt)

@ Students X Ystudent,count(x)—cat Grades : (idnr,name, student, cnt)

o Ocnt>2 A idnr:student/\grade23(Students X ’Ystudent,COUNT(*)_;cnt Grades): ERROR!
There is no grade in the schema of the expression to be used by the o operator in

order to evaluate the condition!

Note: Make sure your expression is correct by performing a sanity check

on it!

February 23rd 2023, Lecture 13

TDA357/DIT621

These (and other) algebraic laws can be used for query simplification
and/or optimisation.

Some laws generate a potentially infinite number of equivalent expressions
for a query. Query optimization tries to find the best of those.

Some laws work with sets but not with bags!

RxtS=S>~R
Ra(SaT)=(R<xS)=T

Set-theoretic laws:

If applicable, associativity, commutativity, distributivity, idempotence of
unions, intersections, products and joins.

. . a1,..,a, R) = Tay,....a, R
Repeated projection: [Wl"""(m’l’ oo R) = oo]

b1, ..., by should be a plain projection, will not work if there is a rename
that it is later projected.

ai, ..., an should be a subset of by, ..., b, for the expression to be correct.

February 23rd 2023 e 13 TDA357/DIT621

Some laws can dramatically reduce the number of rows in the results!

Repeated selection: [gcl(gc2 R)=oanc R]

d0(cc R)=0c(dR)
J(R x S) =8(R) x &(S)

Pushing duplicate elimination inside:

Pushing selection inside cartesian products:

If C only uses
R X Ry) = R1) X R
attributes in Ry: [UC(! 2) ~ (9c Ry 2]

If C; only in Ry and C»

. (76 nc (R x R) = (06, R) x (0c, R:)]
only in R»:

Note: See section 2 in chapter 16 of the book for more algebraic laws for
improving queries!

February 23rd 2023, Lecture 13 TDA357/DIT621

To make large relation algebra expressions more readable:

o Write them over several lines and use indentation to show the
structure:

TTA.name
(UA.name:B.capital
(pa Countries X pp Countries))

o Split them in to several named parts:

Ri = pa Countries X pg Countries
R2 - UA.name:B.capitalRl
Result = 7 nane R2

TDA357/DIT621

o A basic SQL query (performing some projection, selection and
cartesian product) is done “altogether” and produces a single result.
In relational algebra, each operation results is a new relation.

o It is then important to keep track of what information is available
after each step (see slide 28!).

Recall the expression (7idnr Students — Tstudent Grades) in slide 22: it results in a
relation with student’s id as single information; to retrieve the rest of the

information of students we needed to perform a join!

o The abstract syntax tree of a relational algebra expression can help
you understanding the expression.

o Translating SQL to relational algebra, simplifying the expression and
then translating it back to SQL can give a not too compact query!

February 23rd 2023, Lecture 13 TDA357/DIT621

@ Quiz with recap of all course!
(Good if you have a separate device to answer the quiz than that you
use to see the questions if you are on zoom.)

TDA357/DIT621

