
Databases

TDA357/DIT621– LP3 2023

Lecture 13

Ana Bove

(much of the material is based on material from
both Thomas Hallgren and Jonas Dureg̊ard)

February 23rd 2023

Recall Last Lecture

Transactions:

BEGIN/COMMIT or ROLLBACK;
ACID properties: atomicity, consistency, isolation and durability;
Interference problems: dirty read, non-repeatable read, phantom;
Isolation levels: serializable, repeatable read, read committed, read
uncommitted;

Authorisation and privileges:

Privileges can be granted and revoked to users/roles;
Most common privileges: SELECT, INSERT, UPDATE and DELETE;

Indexes:

DBMS defines indexes on primary keys and unique attributes;
Users can define (and drop) other indexes: advantages and
disadvantages on this!

February 23rd 2023, Lecture 13 TDA357/DIT621 1/33

Overview of Today’s Lecture

Relational algebra;

Correspondence between SQL and relational algebra;

A glance into query optimisation.

February 23rd 2023, Lecture 13 TDA357/DIT621 2/33

Recall (Lecture 6): Relations, Relation Schemas and Tables

A relation R is a subset of the cartesian product of two or more sets
T1,T2, . . . ,Tn:

R ⊆ T1 × T2 × · · · × Tn

A relation schema R(a1, . . . , an) can be augmented with the
domain/type of each attribute R(a1 : T1, . . . , an : Tn);

The relation signature of the relation R is then the corresponding
cartesian product T1 × · · · × Tn;

Given a relation schema R(a1, . . . , an) with signature T1 × · · · × Tn:

A table for the schema R(a1, . . . , an) is a subset of the cartesian
product T1 × · · · × Tn;
A row in the table is an element of the cartesian product
t ∈ T1 × · · · × Tn.

February 23rd 2023, Lecture 13 TDA357/DIT621 3/33

Algebra

Definition: (Wikipedia) Algebra is the study of mathematical symbols and
the rules for manipulating these symbols.

Broad field of mathematics, going from elementary equation solving (elementary

algebra, linear algebra) to the study of abstractions such as groups, rings, lattices...

(abstract algebra).

In an algebra we have set of values, operations on those values, and
formulas built from the values and the operators.

Example: Natural numbers with addition and multiplication form an algebra.

Example: Boolean algebra consists of the two Boolean values and the operators ∨,∧,

Note: Observe that both the Natural numbers and Booleans are closed under those

operations (the result of the operation is also in the set).

February 23rd 2023, Lecture 13 TDA357/DIT621 4/33

Relational Algebra

Definition: Relational algebra is a theory that uses algebraic structures for
modeling data and defining queries on the data.

A concise mathematical notation in which we can express relations and
queries.

Main advantages:

Reasoning: We can use mathematics to prove that our queries do what
we intend them to do.

Simplification: Using known algebraic laws one can simplify complicated
relational algebra expressions (queries).

Optimisation: Simplification can make queries faster.

February 23rd 2023, Lecture 13 TDA357/DIT621 5/33

SQL Query Processing

A DBMS processes a query in several steps:

Lexing: The input string is converted into a sequence of tokens.

Parsing: The sequence of tokens is converted into a(n SQL) syntax
tree.

Type checking: The syntax tree is checked semantically.

Logical query plan generation: The syntax tree is converted into a
relational algebra expression.

Optimisation: The relational algebra expression is converted into a more
efficient relational algebra expression.
Which of two different queries solving the same problem is more

efficient (partly) depends on what the DBMS does here.

Physical query plan generation: The more efficient expression is converted
into a sequence of algorithm calls.

Execution: The physical query plan is executed and produces a result.

February 23rd 2023, Lecture 13 TDA357/DIT621 6/33

Back to Relational Algebra

What are the values and operations in this algebra?

The values are relations (the tables in the database).

This means the relation schema (name of the relation and its attributes) and the

(labelled) tuples in the relation (rows in the table).

The operations are the different things we can do on a relation.

Example: Select, group by, order, ...

Each operation returns a new relation.

Note: When working with relational algebra, we focus on the schema, not the actual

tuples.

February 23rd 2023, Lecture 13 TDA357/DIT621 7/33

Do we Work with Sets, Bags, Lists or Arrays?

No order Ordered

No duplicates Sets Ordered sets

Duplicates Multisets/bags Lists or arrays

In sets/relations: Order and duplication is irrelevant.

In tables: Order and duplication make a difference:

SQL has DISTINCT and ORDER BY;
Set operations UNION, INTERSECT and EXCEPT
discard duplicates ...
... but UNION ALL, INTERSECT ALL and
EXCEPT ALL preserve duplicates;
Primary keys and unique constrains prevent duplicates ...
... but the result of a query can still contain duplicates.

February 23rd 2023, Lecture 13 TDA357/DIT621 8/33

Relational Algebra: Basic Notation and Correspondences

Concept Relational algebra Set theory SQL

domain of
attribute values T type

cartesian
products of sets T1 × ...× Tn {〈t1, ..., tn〉 | ti ∈ Ti} relation schema

relation R R ⊆ T1 × ...× Tn table

tuple {a = t1, ..., k = tn} 〈t1, ..., tn〉 row

label a attribute name

component t.a πi(a)t, ti(a) value of attribute

{ti | 〈..., ti , ...〉 ∈ R} column

February 23rd 2023, Lecture 13 TDA357/DIT621 9/33

Relational Schema in this Lecture

Countries and their currency values:

Currencies (code, name, value)

Countries (name, abbr , capital, area, population, continent, currency)
currency → Currencies.code

Countries with their capitals and currencies:

Capitals (country, capital)
country → Countries.name

CurrencyCodes (country, currency)
country → Countries.name

Students and their grades:

Students (idnr, name)

Grades (student, course, grade)
student → Students.idnr
course → ...

February 23rd 2023, Lecture 13 TDA357/DIT621 10/33

From SQL to Relational Algebra: Basic Queries

Table names can be used directly.

SQL

SELECT projection
FROM Table
WHERE condition;

Relational Algebra

πprojection(σcondition(Table))

π for projections of components

σ for selection of tuples/elements

Note: Here condition is a Boolean-expression, not an SQL
sub-query/relational algebra expression!

February 23rd 2023, Lecture 13 TDA357/DIT621 11/33

Examples: Basic Queries in Relational Algebra

SQL Relational Algebra

SELECT * FROM Countries; Countries

Selecting rows:

SELECT * FROM Countries
WHERE abbr = ’UY’;

σabbr=′UY′(Countries)

Projection:

SELECT capital FROM Countries
WHERE abbr = ’UY’;

πcapital
(σabbr=′UY′(Countries))

Expressions:

SELECT capital, population/area
FROM Countries
WHERE abbr = ’UY’;

πcapital, population/area

(σabbr=′UY′(Countries))

Note: From now on, we might omit some (,) when we break into different lines.

February 23rd 2023, Lecture 13 TDA357/DIT621 12/33

From SQL to Relational Algebra: Renaming

SQL Relational Algebra

Renaming columns:

SELECT name AS country,
population/area AS density

FROM Countries
WHERE continent = ’EU’;

AS becomes → :

πname→country, population/area→density

σcontinent=′EU′

Countries

Renaming tables:

SELECT A.abbr
FROM Countries AS A,
WHERE A.name = ’Sweden’;

ρ for renaming tables:

πA.abbr(σA.name=′Sweden′(ρA Countries))

ρ can be also be used to give a
new schema (renaming tables and
attributes)

π...,A.ai,...

σ...,A.aj=...(ρA<a1,a2,..> Table)

February 23rd 2023, Lecture 13 TDA357/DIT621 13/33

From SQL to Relational Algebra: Sorting
SQL Relational Algebra

Sorting on a
selected attribute:

SELECT name, capital,
FROM Countries
ORDER BY name;

τ for sorting:

πname, capital (τname Countries)

τname (πname, capital Countries)

Descending:

SELECT name, capital,
FROM Countries
ORDER BY name DESC;

πname, capital (τ−name Countries)

τ−name (πname, capital Countries)

Sorting on a
non-selected attribute:

SELECT name, capital,
FROM Countries
ORDER BY area;

One cannot sort by an attribute
that has already been discarded
by a projection:

πname, capital (τarea Countries)

February 23rd 2023, Lecture 13 TDA357/DIT621 14/33

From SQL to Relational Algebra: Duplicates

Recall: set vs. bag semantics!

SQL Relational Algebra

SELECT currency,
FROM Countries;

Might contain duplicates:

πcurrency Countries

SELECT DISTINCT currency,
FROM Countries;

δ for removing duplicates:

δ(πcurrency Countries)

February 23rd 2023, Lecture 13 TDA357/DIT621 15/33

From SQL to Relational Algebra: Grouping and
Aggregations

SQL Relational Algebra

SELECT currency, COUNT(name),
FROM Countries
GROUP BY currency;

γ combines
SELECT and GROUP BY:

γcurrency, COUNT(name) Countries

Aggregations are done in γ!
Rename to use the result elsewhere.

SELECT currency, SUM(population),
FROM Countries
GROUP BY currency
HAVING COUNT(name) > 1;

πcurrency, sum pop

σcnt>1

γcurrency, SUM(population)→sum pop,

COUNT(name)→cnt

Countries

Note: Both WHERE cond and HAVING cond become σcond.
February 23rd 2023, Lecture 13 TDA357/DIT621 16/33

From SQL to Relational Algebra: Cartesian Products

SQL Relational Algebra

Full cartesian product:

SELECT Countries.name,
Currencies.name,

FROM Countries, Currencies;

Not often what we need...

πCountries.name, Currencies.name

Countries× Currencies

Theta join:

SELECT Countries.name,
Currencies.name,

FROM Countries, Currencies
WHERE currency = code;

πCountries.name, Currencies.name

σcurrency=code

Countries× Currencies

February 23rd 2023, Lecture 13 TDA357/DIT621 17/33

From SQL to Relational Algebra: Natural and Inner Joins

SQL Relational Algebra

Natural join:

SELECT capital, currency,
FROM Capitals
NATURAL JOIN CurrencyCodes;

πcapital, currency

Capitals ./ CurrencyCodes

Inner join:

SELECT Countries.name,
Currencies.name,

FROM Countries JOIN Currencies
ON currency = code;

πCountries.name, Currencies.name

Countries ./currency=code Currencies

February 23rd 2023, Lecture 13 TDA357/DIT621 18/33

From SQL to Relational Algebra: Outer Joins

SQL Relational Algebra

SELECT Countries.name,
Currencies.name,

FROM Countries
RIGHT OUTER JOIN Currencies
ON currency = code;

Right outer join:

πCountries.name, Currencies.name

Countries ./OR
currency=code Currencies

SELECT Countries.name,
Currencies.name,

FROM Countries
LEFT OUTER JOIN Currencies
ON currency = code;

Left outer join:

πCountries.name, Currencies.name

Countries ./OL
currency=code Currencies

SELECT Countries.name,
Currencies.name,

FROM Countries
FULL OUTER JOIN Currencies
ON currency = code;

Full outer join:

πCountries.name, Currencies.name

Countries ./Ocurrency=code Currencies

February 23rd 2023, Lecture 13 TDA357/DIT621 19/33

What about Correlated Queries?

Consider the query:

SELECT name
FROM Students AS S
WHERE 4 < (SELECT AVG(grade) FROM Grades WHERE student = S.idnr)

The correlation needs to be replaced with a join (or cartesian product and
corresponding select).

πname(σ4<average(γstudent,name,AVG(grade)→average(Grades ./idnr=student Students)))

From the join, group by students and name, and compute the average of the grades of

each student, select those with an average of at least 4, finally project the name.

February 23rd 2023, Lecture 13 TDA357/DIT621 20/33

Back to Grouping in Relational Algebra

Are these the same query?

Groups by student
id and name;
name available
for projection

πname,passed
γstudent,name,COUNT(∗)→passed

σgrade>3∧ idnr=student(Students× Grades)

Groups only
by student;
needs a join to
project name

πname,passed
(γstudent,COUNT(∗)→passed

(σgrade>3∧ idnr=student(Students× Grades))
./student=idnr Students)

Note: Since we have the FD student → name, these queries are the same.
Otherwise they might not be since the result of grouping by
(student, name) might be different than grouping by just student!
February 23rd 2023, Lecture 13 TDA357/DIT621 21/33

What about NOT IN or NOT EXISTS?

One needs to try to understand the query in terms of sets, and use set
operations instead.

Example: Consider the query that selects students that have no grades:

SELECT idnr, name
FROM Students
WHERE idnr NOT IN (SELECT student FROM Grades)

We can use set difference in relational algebra to obtain this result:

πidnr,name(Students ./idnr=st (ρNoGrades〈st〉(πidnr Students− πstudent Grades)))

The result of (πidnr Students− πstudent Grades) is a relation consisting of “1-tuples”.
We give a new name to the information (table and attribute).

We join to retrieve the rest of the information of the students to project their name.

February 23rd 2023, Lecture 13 TDA357/DIT621 22/33

Relation Algebra: Set Operation

Concept Relational
algebra

Set theory SQL

cartesian prod-
ucts of relations

S × R {〈x , .., u, ..〉 |
〈x , ..〉 ∈ S , 〈u, ..〉 ∈ R}

FROM S, R

union with
duplicates

S ∪ R {t | t ∈ S or t ∈ R}
OBS: bags!

S UNION ALL R

union δ(S ∪ R) {t | t ∈ S or t ∈ R} S UNION R

intersection
with duplicates

S ∩ R {t | t ∈ S and t ∈ R}
OBS: bags!

S INTERSECT ALL R

intersection δ(S ∩ R) {t | t ∈ S and t ∈ R} S INTERSECT R

difference with
duplicates

S − R {t | t ∈ S and t /∈ R}
OBS: bags!

S EXCEPT ALL R

difference δ(S − R) {t | t ∈ S and t /∈ R} S EXCEPT R

Note: Recall “schemas” need to be compatible for some of the set operations to work!

February 23rd 2023, Lecture 13 TDA357/DIT621 23/33

Relation Algebra: Summary of Correspondences

Concept Rel algebra Set theory SQL

projection πa,b,...,k R 〈t.a, t.b, ..., t.k |
t ∈ R〉

SELECT a, b, .., k

selection σC R {t ∈ R | C} WHERE C
σC R HAVING C

theta join S ./C R = σC (S × R) {t ∈ S × R | C} S INNER JOIN R ON C

outer join S ./OC R ... S FULL OUTER JOIN R
ON C

S ./OL
C R ... LEFT OUTER JOIN

S ./OR
C R ... RIGHT OUTER JOIN

natural join S ./ R ... S NATURAL JOIN R

renaming a→ b — AS
ρA R

new
schema

ρA<a,...,k> R — —

removing
duplicates

δ R — DISTINCT

sorting τa R — ORDER BY a

grouping γa R — GROUP BY a

February 23rd 2023, Lecture 13 TDA357/DIT621 24/33

Example: From Problem to Relational Algebra

Select the name of all students
that have passed at least 2
courses.

Students (idnr, name)
Grades (student, course, grade)

student → Students.idnr
course → ...

Group first, join later: select passed courses in Grades, group by students and

count passed course per student, now do the join, select entries where at least 2

courses are passed and project student names.

πname(σpassed>2∧ idnr=student(Students×
γstudent,COUNT(∗)→passed(σgrade>3 Grades)))

Join first, group later: from the join, select passed courses, group by students

and names, and count passed courses per student, select entries where at least 2

courses are passed and project student names.

πname(σpassed>2(γstudent,name,COUNT(∗)→passed(σgrade>3∧ idnr=student

(Students× Grades))))

February 23rd 2023, Lecture 13 TDA357/DIT621 25/33

Example: From SQL to Relational Algebra

A query with almost everything:

SELECT a1, MAX(a2) AS max
FROM T1, T2
WHERE a3 = 5
GROUP BY a1, a3
HAVING COUNT(*) > 10
ORDER BY a1 DESC;

A relational algebra expression for it:

τ−a1(πa1,max(σcnt>10(γa1,a3,MAX(a2)→max,COUNT(∗)→cnt(σa3=5(T1× T2)))))

From the join, select entries where a3 = 5.
Group by a1, a3 and compute number of elements and MAX(a2) per group.
Select entries where the count is at least 10.
Project a1 and MAX(a2) for those entries.
Sort the result descending in a1.

February 23rd 2023, Lecture 13 TDA357/DIT621 26/33

Sanity Check (1)!

Given this schema, is the re-
lational algebra query below
correct?

Students (idnr, name)
Grades (student, course, grade)

student → Students.idnr
course → ...

πidnr(σpassed>2∧ idnr=student(Students× γstudent,COUNT(∗)→passed(σgrade>3 Grades)))

Let us sanity check the expression by computing the schema bit by bit!

σgrade>3 Grades : (student, course, grade)

γstudent,COUNT(∗)→passed(σgrade>3 Grades) : (student, passed)

Students×γstudent,COUNT(∗)→passed(σgrade>3 Grades) : (idnr, name, student, passed)

σpassed>2∧ idnr=student(Students× γstudent,COUNT(∗)→passed(σgrade>3 Grades)):
(idnr, name, student, passed)

πidnr(σpassed>2∧ idnr=student(Students× γstudent,COUNT(∗)→passed(σgrade>3 Grades))):
(idnr)

February 23rd 2023, Lecture 13 TDA357/DIT621 27/33

Sanity Check (2)!

Given this schema, is the re-
lational algebra query below
correct?

Students (idnr, name)
Grades (student, course, grade)

student → Students.idnr
course → ...

πidnr(σcnt>2∧ idnr=student∧ grade>3(Students× γstudent,COUNT(∗)→cnt Grades))

Let us sanity check the expression by computing the schema bit by bit!

γstudent,COUNT(∗)→cnt Grades : (student, cnt)

Students× γstudent,COUNT(∗)→cnt Grades : (idnr, name, student, cnt)

σcnt>2∧ idnr=student∧ grade>3(Students× γstudent,COUNT(∗)→cnt Grades): ERROR!

There is no grade in the schema of the expression to be used by the σ operator in
order to evaluate the condition!

Note: Make sure your expression is correct by performing a sanity check
on it!

February 23rd 2023, Lecture 13 TDA357/DIT621 28/33

Some Algebraic Laws

These (and other) algebraic laws can be used for query simplification
and/or optimisation.

Some laws generate a potentially infinite number of equivalent expressions
for a query. Query optimization tries to find the best of those.

Some laws work with sets but not with bags!

Set-theoretic laws:

R ./ S = S ./ R
R ./ (S ./ T) = (R ./ S) ./ T

If applicable, associativity, commutativity, distributivity, idempotence of

unions, intersections, products and joins.

Repeated projection:
πa1,..,an (πb1,...,bm R) = πa1,...,an R

b1, ..., bm should be a plain projection, will not work if there is a rename
that it is later projected.

a1, ..., an should be a subset of b1, ..., bm for the expression to be correct.

February 23rd 2023, Lecture 13 TDA357/DIT621 29/33

Some Algebraic Laws (Cont.)

Some laws can dramatically reduce the number of rows in the results!

Repeated selection:
σC1 (σC2 R) = σC1 ∧ C2 R

Pushing duplicate elimination inside:

δ(σC R) = σC (δ R)
δ(R × S) = δ(R)× δ(S)

Pushing selection inside cartesian products:
If C only uses

attributes in R1:
σC (R1 × R2) = (σC R1)× R2

If C1 only in R1 and C2

only in R2:
σC1 ∧ C2 (R1 × R2) = (σC1 R1)× (σC2 R2)

Note: See section 2 in chapter 16 of the book for more algebraic laws for
improving queries!
February 23rd 2023, Lecture 13 TDA357/DIT621 30/33

Presentation

To make large relation algebra expressions more readable:

Write them over several lines and use indentation to show the
structure:

πA.name
(σA.name=B.capital

(ρA Countries× ρB Countries))

Split them in to several named parts:

R1 = ρA Countries× ρB Countries

R2 = σA.name=B.capitalR1

Result = πA.nameR2

February 23rd 2023, Lecture 13 TDA357/DIT621 31/33

Final Remarks

A basic SQL query (performing some projection, selection and
cartesian product) is done “altogether” and produces a single result.
In relational algebra, each operation results is a new relation.

It is then important to keep track of what information is available
after each step (see slide 28!).

Recall the expression (πidnr Students− πstudent Grades) in slide 22: it results in a

relation with student’s id as single information; to retrieve the rest of the

information of students we needed to perform a join!

The abstract syntax tree of a relational algebra expression can help
you understanding the expression.

Translating SQL to relational algebra, simplifying the expression and
then translating it back to SQL can give a not too compact query!

February 23rd 2023, Lecture 13 TDA357/DIT621 32/33

Overview of Next Lecture

Quiz with recap of all course!
(Good if you have a separate device to answer the quiz than that you
use to see the questions if you are on zoom.)

February 23rd 2023, Lecture 13 TDA357/DIT621 33/33

