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Statistical inference

Lectures: Aila Särkkä
Tuesday 13:15-15:00
Friday 13:15-15:00

Exercises: TonyJohansson
Monday 13-15-15:00
Wednesday 13:15-15:00

Exam: Tuesday, March 14, 14:00-18:00

Course literature:

▶ Compendium ”Statistical inference” by Serik Sagitov

▶ Additional textbook: Mathematical statistics and data
analysis, 3rd edition (2nd edition is also OK), by John Rice
(Cremona).
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Interested in taking notes?
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Introduction

Statistical analysis consists of

▶ collecting data

▶ organising and summarising data

▶ analysing and interpreting data
(inference).

In this course, we will talk about

▶ parameter estimation and hypothesis
testing based on properly collected,
relatively small data sets.

▶ basic principles of experimental
design, such as randomisation,
blocking, and replication, are
recalled.
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List of course topics

▶ Parametric models (different distribution)

▶ Random sampling (simple random sampling, stratified
sampling)

▶ Parameter estimation (method of moments, maximum
likelihood)

▶ Hypothesis testing (likelihood ratio test)

▶ Bayesian inference

▶ Summarising data (QQ-plots, skewness and kurtosis)

▶ Comparing two samples (means, proportions, paired data)

▶ Analysis of variance

▶ Categorical data analysis (χ2-test)

▶ Multiple regression
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Some definitions and notations

We denote random variables by capital letters, X , Y , Z , ..., and
their values/realizations by the corresponding small letters x , y , z ...

Recall that the expected value (mean) of a random variable X is
defined as

E(X ) =
∞∑
i=1

xi P(X = xi ) =
∞∑
i=1

xipi

if X is a discrete with the probability mass function
pi = P(X = xi ), i = 1, ..., and as

E(X ) =

∞∫
−∞

x f (x) dx

if X is a continuous with the density function f . The mean of X is
often denoted by µ, i.e.

E(X ) = µ.
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Some definitions and notations

The variance of X is defined as

Var(X ) = E((X − E(X ))2) = E((X − µ)2) = E(X 2)− µ2,

where X − µ is called the deviation from the mean. The square
root of the variance is called the standard deviation.

The variance of X is often denoted by σ2, i.e. Var(X ) = σ2, and
the standard deviation by σ.

Sometimes, a standardised version of X ,

Z =
X − µ

σ
,

called a z-score, is used. It has mean 0 and variance 1.
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Some definitions and notations

Covariance between two random variables X and Y is defined as

Cov(X ,Y ) = E((X − µX )(Y − µY )) = E(XY )− µXµY

and correlation as

ρ =
Cov(X ,Y )

σXσY
,

where µX and µY , and σX and σY , are the means and standard
deviations of X and Y , respectively.

Note that −1 ≤ ρ ≤ +1 and ρ is -1 or +1 if X is a linear function
of Y .

If X and Y are independent, ρ = 0, but not necessarily the other
way around.
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Some distributions: normal distribution

▶ Normal distribution plays a
central role in probability theory
and statistics.

▶ If a random variable X is
normally distributed,
X ∼ N(µ, σ), it has the density
function

f (x) =
1√
2πσ

exp

(
1

2σ2
(x − µ)2

)
with mean µ ∈ R and variance
σ2 > 0.
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Some distributions: normal distribution

▶ If X ∼ N(µ, σ), then

Z =
X − µ

σ
∼ N(0, 1)

(standard normal distribution).

▶ Measurement error (random noise) is often modelled by a
normal N(0, σ) variable, i.e.

Y = µ+ σZ ,

where Z ∼ N(0, 1). The standard deviation is called the size
of the noise.
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Law of large numbers and central limit teorem

Let X1,X2, ...,Xn be independent and identically distributed (iid)
random variables with mean µ and variance σ2.

The law of large numbers states that X̄ → µ as n → ∞.

According to the central limit theorem, the mean

X̄ ≈ N(µ, σ/
√
n)

if the sample size n is large enough.

Aila Särkkä Statistical inference (MVE155/MSG200)



Mixtures of normal distributions

Example: We have particles of two different sizes in a liquide.
Diameter distribution of one of them, X1, is N(µ1, σ1) (with the
density function f1) and of the other, X2, N(µ2, σ2) (with f2). The
distribution of the diameter is then a mixture of the two normal
distributions,

f (y) = w1f1(y) + w2f2(y),

where the particle (its diameter) comes from the distribution f1
with probability w1 and from the distribution f2 with probability
w2, and w1 + w2 = 1.
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Mixtures of normal distributions

In general, if we have k different components (particle sizes),
X1,X2, ...,Xk , each having a a normal distribution N(µi , σi ),
i = 1, ..., k , the variable Y from the mixture distribution

f (y) = w1f1(y) + ...+ wk fk(y),

and comes from the ith normal distribution with probability wi ,
i = i , ..., k , where w1 + w2 + ...+ wk = 1.

The mean E(Y ) = µ and variance Var(Y ) = σ2 become

µ =
k∑
i=i

wiµi and σ2 =
k∑

i=1

wi (µi − µ)2 +
k∑

i=1

wiσ
2
i .

Note that the variance has two parts, between and within
components.
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t-distribution

Let X1,X2, ...,Xn be iid variables from N(µ, σ). Then,
X̄ ∼ N(µ, σ/

√
n) and

X̄ − µ

σ/
√
n
∼ N(0, 1).

What is the distribution if σ is unknown and needs to be
estimated?
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t-distribution

Recall that X̄ is an unbiased estimator for µ (with variance σ2/n)
and

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2

an unbiased estimator for σ2 (with variance σ4

n (E((X−µ
σ )4)− n−3

n−1).

Then,
X̄ − µ

S/
√
n

has the t-distribution with n − 1 degrees of freedom, tn−1.
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t-distribution

As the number of degrees of freedom increases, the t-distribution
approaches N(0, 1)-distribution.
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t-distribution

The density function of the t-distribution with k ≥ 0 degrees of
freedom is

f (x) =
Γ(k+1

2 )
√
kπ Γ(k2 )

(1 +
x2

k
)−

k+1
2 , −∞ < x < ∞,

where

Γ(α) =

∫ ∞

0
xα−1e−x dx

and
Γ(k) = (k − 1)! for k = 1, 2, ...

The mean of the t-distribution is always zero and the variance
depends on k (can be infinite or undefined).
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Gamma and exponential distributions

Positive valued continuous distributions.

The density function of Gamma distribution, Gam(α, λ), is

f (x) =
1

Γ(α)
λαxα−1e−λx , x > 0,

where α > 0 is a shape parameter and λ > 0 is the (inverse) scale
parameter.

Exponential distribution is a special case of Gamma distribution,
namely

Gam(1, λ) = Exp(λ).

Also, if X1,X2, ...,Xk are independent Exp(λ)-variables, then

X1 + X2 + ...+ Xk ∼ Gam(k , λ), k = 1, 2, ...

The mean of Gam(α, λ) is α/λ and the variance α/λ2.
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χ2 distribution

χ2-distribution can be defined by using N(0, 1)-distribution: Let
Z1,Z2, ...,Zn be independent N(0, 1)-distributed random variables.
Then

Z 2
1 + Z 2

2 + ...+ Z 2
n ∼ χ2

n.

Also, for independent N(µ, σ)-distributed random variables
X1,X2, ...,Xn

(X1 − X̄ )2 + (X2 − X̄ )2 + ...+ (Xn − X̄ )2

σ2
∼ χ2

n−1.

χ2-distribution is also a special case of Gamma distribution, namely

Gam(
k

2
,
1

2
) = χ2(k)

(k is a positive integer).
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Examples of gamma, exponential, and χ2 distributions

Gamma (top), exponential (bottom left), and χ2:
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Note on t-distribution

t-distribution is defined as a ratio of two independent random
variables: a N(0, 1)-distributed random variable Z and a square
root of a χ2-distributed random variable V divided by the number
of its degrees of freedom df , i.e.

Z√
V /df

∼ tdf .

Let X ∼ N(µ, σ) and S2 the sample variance based on a sample of
size n. Then,

X̄ − µ

S/
√
n
=

X̄ − µ

σ/
√
n
· σ
S

=

√
n (X̄ − µ)/σ√

((n − 1)S2/σ2)/(n − 1)
∼ tn−1

since
√
n(X̄ − µ)/σ ∼ N(0, 1) and V = (n − 1)S2/σ2 ∼ χ2

n−1.
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Bernoulli distribution

We flip a coin and define X to be a stochastic variable that gets
the value 1 if the result is ”heads” and value 0 if the result is
”tails”. Let the probability of ”heads” be p.

Then, X is Bernoulli distributed with parameter p ∈ [0, 1] with

P(X = 1) = p and P(X = 0) = 1− p.
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Binomial distribution

Let us flip the coin n times and denote the (stochastic) number of
”heads” by Y . Then, Y is binomially distributed, Bin(n, p). For
Y ∼ Bin(n, p),

P(Y = y) =

(
n
y

)
py (1− p)n−y , y = 0, 1, ..., n.

Y is a sum of n independent random variables from Bernoulli
distribution with parameter p. Therefore, Bernoulli distributed
random variable is Bin(1, p).

For y ∼Bin(n, p),

µ = np and σ2 = np(1− p).
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Binomial distribution: approximation, continuity correction

Binomial distribution can be approximated by a normal distribution
(due to the central limit theorem) when np ≥ 5 and n(1− p) ≥ 5:

Bin(n, p) ≈ N(np,
√
np(1− p)).

If n is small, the approximation can be improved by using the
so-called continuity correction: For Y ∼Bin(n, p) (and
y = 1, ..., n),

P(Y ≤ y) = P(Y < y + 1)

and therefore, y can be replaced by any number in the interval
[y , y + 1), e.g. by y + 1

2 .
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Binomial distribution: continuity correction

Then,

P(Y ≤ y) = P(Y ≤ y +
1

2
) ≈ Φ

(
y + 1

2 − np√
np(1− p)

)

and

P(Y < y) = P(Y ≤ y − 1

2
) ≈ Φ

(
y − 1

2 − np√
np(1− p)

)
,

where Φ is the distribution function of the standard normal
distribution N(0, 1).
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Multinomial distribution

In binomial distribution, there are two possible outcomes like
”heads” and tails” or ”success” and ”failure”. If there are more
than two outcomes (e.g. six sides of a dice), we have a multinomial
distribution. Then, (X1, ...,Xr ) ∼ Mn(n; p1, ..., pr ) and

P(X1 = x1, ...,Xr = xr ) =
n!

x1! · · · xr !
px11 · · · pxrr ,

where xi = 0, ..., n, i = 1, .., r and (p1, ..., pr ) is a vector of
probabilities such that

p1 + ...+ pr = 1.

Note that Bin(n, p) =Mn(n; p, 1− p) and that the marginal
distributions of Xi , ...,Xr are Bin(n, pi ). Also, the different counts
Xi and Xj , i ̸= j , are negatively correlated.
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Poisson distribution

Poisson distribution is used to describe the number of rear events,
e.g. earthquakes, during a given time interval.

For a Poisson distributed random variable X ∼ Pois(µ),

P(X = x) =
µx

x!
e−µ, x = 0, 1, ....

The mean and variance are both equal to µ.

Pois(µ) can be obtained as a limit of Bin(n, p) as n → ∞, p → 0,
and np → µ (and Bin(n, p) can be approximated by Pois(np)).
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Geometric distribution

We have a sequence of coin flips (Bernoulli trials) with probability
p for ”heads”. The number of trials, X , needed until we get the
first ”heads” has a geometric distribution with parameter p,
p ∼ Geom(p), with

P(X = x) = (1− p)x−1p, x = 1, 2, ...

The mean and the variance are 1
p and 1−p

p2
, respectively.
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Hypergeometric distribution

Let us have B black balls and W = N − B white balls in a box
(with N balls) and let us draw n balls from the box without
replacement. Then, the number of black balls among the n balls,
X , has the distribution

P(X = x) =

(
B
x

)(
W

n − x

)
(

N
n

) , max(0, n −W ) ≤ x ≤ min(n,B),

and X ∼ HG(N, n, p)-distributed, where p is the portion of black
balls, i.e. B = Np.

The mean and variance of X are µ = np and np(1− p)N−n
N−1 , where

N−n
N−1 is called the finite population correction.
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Hypergeometric distribution

If n is much smaller than N, N−n
N−1 is close to 1 and

HG(N, n, p) ≈ Bin(n, p).

Also, HG(N, n, p) can be approximated by normal distribution,
namely

HG(N, n, p) ≈ N

(
np,

√
np(1− p)

N − n

N − 1

)
,

which can be used when np ≥ 5 and n(p − 1) ≥ 5. Note that the
drawings are not independent since they are drawn without
replacement.
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