Statistical inference (MVE155/MSG200)

Introduction

Aila Särkkä Statistical inference (MVE155/MSG200)

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Lectures: Aila Särkkä Tuesday 13:15-15:00 Friday 13:15-15:00

Exercises: TonyJohansson Monday 13-15-15:00 Wednesday 13:15-15:00

Exam: Tuesday, March 14, 14:00-18:00

Course literature:

- Compendium "Statistical inference" by Serik Sagitov
- Additional textbook: Mathematical statistics and data analysis, 3rd edition (2nd edition is also OK), by John Rice (Cremona).

(4) (3) (4) (3)

Interested in taking notes?

CHALMERS

FUNKA IS LOOKING FOR A NOTE-TAKER

- · You help other students who would otherwise find it difficult to take up their studies in a good way.
- · You also help yourself as your own notes make you perform better and remember longer.
- Through the work, you do you will learn to plan and structure your notes, which you will benefit from even after studying.
- · You also get paid for your work as a note-taker.

https://student.portal.chalmers.se/en/chalmersstudies/disabilities/notetakingsupport/Pages/for-those-who-want-to-become-a-note-taker.aspx

2023-01-13	Chalmers tekniska högskola
	・ロ・・師・・聞・・聞・ 日・ シック
Aila Särkkä	Statistical inference (MVE155/MSG200)

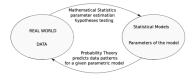
Introduction

Statistical analysis consists of

- collecting data
- organising and summarising data
- analysing and interpreting data (inference).

In this course, we will talk about

- parameter estimation and hypothesis testing based on properly collected, relatively small data sets.
- basic principles of experimental design, such as randomisation, blocking, and replication, are recalled.



List of course topics

- Parametric models (different distribution)
- Random sampling (simple random sampling, stratified sampling)
- Parameter estimation (method of moments, maximum likelihood)
- Hypothesis testing (likelihood ratio test)
- Bayesian inference
- Summarising data (QQ-plots, skewness and kurtosis)
- Comparing two samples (means, proportions, paired data)
- Analysis of variance
- Categorical data analysis (χ^2 -test)
- Multiple regression

Some definitions and notations

We denote random variables by capital letters, X, Y, Z, ..., and their values/realizations by the corresponding small letters x, y, z... Recall that the expected value (mean) of a random variable X is defined as

$$\mathbb{E}(X) = \sum_{i=1}^{\infty} x_i \operatorname{P}(X = x_i) = \sum_{i=1}^{\infty} x_i p_i$$

if X is a discrete with the probability mass function $p_i = P(X = x_i), i = 1, ..., and as$

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

if X is a continuous with the density function f. The mean of X is often denoted by μ , i.e.

$$\mathbb{E}(X)=\mu.$$

The variance of X is defined as

$$\operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}((X - \mu)^2) = \mathbb{E}(X^2) - \mu^2,$$

where $X - \mu$ is called the deviation from the mean. The square root of the variance is called the standard deviation.

The variance of X is often denoted by σ^2 , i.e. $Var(X) = \sigma^2$, and the standard deviation by σ .

Sometimes, a standardised version of X,

$$\mathsf{Z}=\frac{\mathsf{X}-\mu}{\sigma},$$

called a z-score, is used. It has mean 0 and variance 1.

Covariance between two random variables X and Y is defined as

 $\operatorname{Cov}(X,Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y)) = \mathbb{E}(XY) - \mu_X \mu_Y$

and correlation as

$$\rho = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y},$$

where μ_X and μ_Y , and σ_X and σ_Y , are the means and standard deviations of X and Y, respectively.

Note that $-1 \le \rho \le +1$ and ρ is -1 or +1 if X is a linear function of Y.

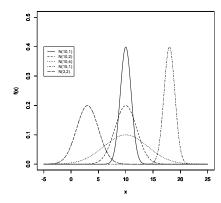
If X and Y are independent, $\rho = 0$, but not necessarily the other way around.

Some distributions: normal distribution

- Normal distribution plays a central role in probability theory and statistics.
- If a random variable X is normally distributed,
 X ~ N(μ, σ), it has the density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 > 0$.



• If $X \sim N(\mu, \sigma)$, then

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

(standard normal distribution).

Measurement error (random noise) is often modelled by a normal N(0, σ) variable, i.e.

 $Y = \mu + \sigma Z,$

where $Z \sim N(0, 1)$. The standard deviation is called the size of the noise.

• • = • • = •

Let $X_1, X_2, ..., X_n$ be independent and identically distributed (iid) random variables with mean μ and variance σ^2 .

The law of large numbers states that $\bar{X} \to \mu$ as $n \to \infty$.

According to the central limit theorem, the mean

 $\bar{X} \approx N(\mu, \sigma/\sqrt{n})$

if the sample size n is large enough.

Example: We have particles of two different sizes in a liquide. Diameter distribution of one of them, X_1 , is $N(\mu_1, \sigma_1)$ (with the density function f_1) and of the other, X_2 , $N(\mu_2, \sigma_2)$ (with f_2). The distribution of the diameter is then a mixture of the two normal distributions,

$$f(y) = w_1 f_1(y) + w_2 f_2(y),$$

where the particle (its diameter) comes from the distribution f_1 with probability w_1 and from the distribution f_2 with probability w_2 , and $w_1 + w_2 = 1$.

Mixtures of normal distributions

In general, if we have k different components (particle sizes), $X_1, X_2, ..., X_k$, each having a a normal distribution $N(\mu_i, \sigma_i)$, i = 1, ..., k, the variable Y from the mixture distribution

$$f(y) = w_1 f_1(y) + ... + w_k f_k(y),$$

and comes from the *i*th normal distribution with probability w_i , i = i, ..., k, where $w_1 + w_2 + ... + w_k = 1$.

The mean $\mathbb{E}(Y) = \mu$ and variance $Var(Y) = \sigma^2$ become

$$\mu = \sum_{i=i}^{k} w_i \mu_i$$
 and $\sigma^2 = \sum_{i=1}^{k} w_i (\mu_i - \mu)^2 + \sum_{i=1}^{k} w_i \sigma_i^2$.

Note that the variance has two parts, between and within components.

• • = • • = •

Let $X_1, X_2, ..., X_n$ be iid variables from $N(\mu, \sigma)$. Then, $\bar{X} \sim N(\mu, \sigma/\sqrt{n})$ and

 $rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1).$

What is the distribution if σ is unknown and needs to be estimated?

白マシュロマシュロシー

æ

Recall that \bar{X} is an unbiased estimator for μ (with variance σ^2/n) and

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

an unbiased estimator for σ^2 (with variance $\frac{\sigma^4}{n} (\mathbb{E}((\frac{X-\mu}{\sigma})^4) - \frac{n-3}{n-1})$). Then, \bar{X}

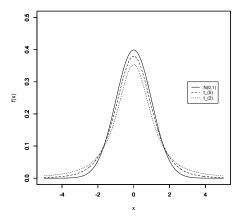
$$\frac{\lambda - \mu}{S/\sqrt{n}}$$

has the t-distribution with n-1 degrees of freedom, t_{n-1} .

A B M A B M

t-distribution

As the number of degrees of freedom increases, the t-distribution approaches N(0, 1)-distribution.



The density function of the t-distribution with $k \ge 0$ degrees of freedom is

$$f(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})} (1 + \frac{x^2}{k})^{-\frac{k+1}{2}}, \quad -\infty < x < \infty,$$

where

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

and

$$\Gamma(k) = (k - 1)!$$
 for $k = 1, 2, ...$

The mean of the t-distribution is always zero and the variance depends on k (can be infinite or undefined).

Gamma and exponential distributions

Positive valued continuous distributions.

The density function of Gamma distribution, $Gam(\alpha, \lambda)$, is

$$f(x) = rac{1}{\Gamma(\alpha)} \lambda^{lpha} x^{lpha - 1} e^{-\lambda x}, \quad x > 0,$$

where $\alpha > 0$ is a shape parameter and $\lambda > 0$ is the (inverse) scale parameter.

Exponential distribution is a special case of Gamma distribution, namely

 $\mathsf{Gam}(1,\lambda) = \mathsf{Exp}(\lambda).$

Also, if $X_1, X_2, ..., X_k$ are independent $E \times p(\lambda)$ -variables, then

 $X_1 + X_2 + ... + X_k \sim Gam(k, \lambda), \quad k = 1, 2, ...$

The mean of $Gam(\alpha, \lambda)$ is α/λ and the variance α/λ^2 .

χ^2 distribution

 χ^2 -distribution can be defined by using N(0,1)-distribution: Let Z_1,Z_2,\ldots,Z_n be independent N(0,1)-distributed random variables. Then

$$Z_1^2 + Z_2^2 + \dots + Z_n^2 \sim \chi_n^2.$$

Also, for independent $N(\mu, \sigma)$ -distributed random variables $X_1, X_2, ..., X_n$

$$\frac{(X_1-\bar{X})^2+(X_2-\bar{X})^2+...+(X_n-\bar{X})^2}{\sigma^2}\sim \chi^2_{n-1}.$$

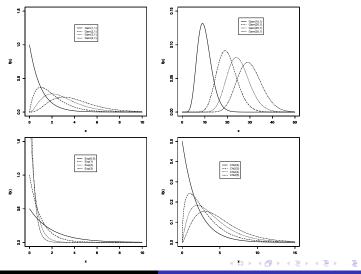
 χ^2 -distribution is also a special case of Gamma distribution, namely

$$\mathsf{Gam}(\frac{k}{2},\frac{1}{2})=\chi^2(k)$$

(k is a positive integer).

Examples of gamma, exponential, and χ^2 distributions

Gamma (top), exponential (bottom left), and χ^2 :



Aila Särkkä

Statistical inference (MVE155/MSG200)

t-distribution is defined as a ratio of two independent random variables: a N(0, 1)-distributed random variable Z and a square root of a χ^2 -distributed random variable V divided by the number of its degrees of freedom df, i.e.

$$rac{Z}{\sqrt{V/df}}\sim t_{df}.$$

Let $X \sim N(\mu, \sigma)$ and S^2 the sample variance based on a sample of size *n*. Then,

$$\frac{\bar{X}-\mu}{S/\sqrt{n}} = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \cdot \frac{\sigma}{S} = \frac{\sqrt{n}(\bar{X}-\mu)/\sigma}{\sqrt{((n-1)S^2/\sigma^2)/(n-1)}} \sim t_{n-1}$$

since $\sqrt{n}(\bar{X}-\mu)/\sigma \sim N(0,1)$ and $V = (n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$.

We flip a coin and define X to be a stochastic variable that gets the value 1 if the result is "heads" and value 0 if the result is "tails". Let the probability of "heads" be p.

Then, X is Bernoulli distributed with parameter $p \in [0, 1]$ with

P(X = 1) = p and P(X = 0) = 1 - p.

向下 イヨト イヨト

Let us flip the coin *n* times and denote the (stochastic) number of "heads" by Y. Then, Y is binomially distributed, Bin(n, p). For $Y \sim Bin(n, p)$,

$$\mathbf{P}(Y=y) = \begin{pmatrix} n \\ y \end{pmatrix} p^{y}(1-p)^{n-y}, \quad y = 0, 1, ..., n.$$

Y is a sum of *n* independent random variables from Bernoulli distribution with parameter *p*. Therefore, Bernoulli distributed random variable is Bin(1, p).

For $y \sim Bin(n, p)$,

$$\mu = np$$
 and $\sigma^2 = np(1-p)$.

A B N A B N

Binomial distribution can be approximated by a normal distribution (due to the central limit theorem) when $np \ge 5$ and $n(1-p) \ge 5$:

 $Bin(n,p) \approx N(np,\sqrt{np(1-p)}).$

If *n* is small, the approximation can be improved by using the so-called continuity correction: For $Y \sim Bin(n, p)$ (and y = 1, ..., n), $P(Y \le y) = P(Y \le y + 1)$

and therefore, y can be replaced by any number in the interval [y, y + 1), e.g. by $y + \frac{1}{2}$.

• • = • • = •

Binomial distribution: continuity correction

Then,

$$P(Y \le y) = P(Y \le y + \frac{1}{2}) \approx \Phi\left(\frac{y + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right)$$

and

$$\mathrm{P}(Y < y) = \mathrm{P}(Y \le y - \frac{1}{2}) \approx \Phi\left(\frac{y - \frac{1}{2} - np}{\sqrt{np(1-p)}}\right),$$

where Φ is the distribution function of the standard normal distribution N(0, 1).

▶ < ≡ ▶ < ≡ ▶</p>

臣

In binomial distribution, there are two possible outcomes like "heads" and tails" or "success" and "failure". If there are more than two outcomes (e.g. six sides of a dice), we have a multinomial distribution. Then, $(X_1, ..., X_r) \sim Mn(n; p_1, ..., p_r)$ and

$$P(X_1 = x_1, ..., X_r = x_r) = \frac{n!}{x_1! \cdots x_r!} p_1^{x_1} \cdots p_r^{x_r},$$

where $x_i = 0, ..., n$, i = 1, ..., r and $(p_1, ..., p_r)$ is a vector of probabilities such that

 $p_1 + ... + p_r = 1.$

Note that Bin(n, p) = Mn(n; p, 1 - p) and that the marginal distributions of $X_i, ..., X_r$ are $Bin(n, p_i)$. Also, the different counts X_i and X_j , $i \neq j$, are negatively correlated.

Poisson distribution is used to describe the number of rear events, e.g. earthquakes, during a given time interval.

For a Poisson distributed random variable $X \sim \text{Pois}(\mu)$,

$$P(X = x) = \frac{\mu^{x}}{x!}e^{-\mu}, \quad x = 0, 1,$$

The mean and variance are both equal to μ .

Pois(μ) can be obtained as a limit of Bin(n, p) as $n \to \infty$, $p \to 0$, and $np \to \mu$ (and Bin(n, p) can be approximated by Pois(np)).

We have a sequence of coin flips (Bernoulli trials) with probability p for "heads". The number of trials, X, needed until we get the first "heads" has a geometric distribution with parameter p, $p \sim \text{Geom}(p)$, with

$$P(X = x) = (1 - p)^{x-1}p, \quad x = 1, 2, ...$$

The mean and the variance are $\frac{1}{p}$ and $\frac{1-p}{p^2}$, respectively.

A B K A B K

Let us have B black balls and W = N - B white balls in a box (with N balls) and let us draw n balls from the box without replacement. Then, the number of black balls among the n balls, X, has the distribution

$$P(X = x) = \frac{\binom{B}{x}\binom{W}{n-x}}{\binom{N}{n}}, \quad \max(0, n-W) \le x \le \min(n, B),$$

and $X \sim HG(N, n, p)$ -distributed, where p is the portion of black balls, i.e. B = Np.

The mean and variance of X are $\mu = np$ and $np(1-p)\frac{N-n}{N-1}$, where $\frac{N-n}{N-1}$ is called the finite population correction.

If *n* is much smaller than *N*, $\frac{N-n}{N-1}$ is close to 1 and $HG(N, n, p) \approx Bin(n, p)$.

Also, HG(N, n, p) can be approximated by normal distribution, namely

$$\operatorname{HG}(N, n, p) \approx N\left(np, \sqrt{np(1-p)\frac{N-n}{N-1}}\right),$$

which can be used when $np \ge 5$ and $n(p-1) \ge 5$. Note that the drawings are not independent since they are drawn without replacement.

ヨト くほと くほとう