Statistical inference (MVE155/MSG200)

Random sampling

Aila Särkkä Statistical inference (MVE155/MSG200)

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

- Rasmus Andersson (MPBME)
- Martin Ekerstedt (MPBME)
- Linnéa Fransson (MPSOF)
- Charlotte Fiona Preunkert (MPENM)
- Gabriel Shafiq Ahlgren (MPENM)

- Random sample: definition
- Point estimation
- Interval estimation
- Random sampling versus simple random sampling
- Stratified sampling

< 注→ < 注→ -

臣

- We have a population of interest and are interested in some property of it .
- Using probability theory, we can draw conclusions of a population based on only a sample, a subset of the population.
- A random sample of size *n* from the distribution of a random variable X is a collection of independent random variables that have the same distribution as X.
- Statistical inference is an estimate, prediction, or some other generalization of a large population that we make based on a random sample from the population.

Let $X_1, ..., X_n$ be a vector of iid random variables, i.e. a random sample, and $x_1, ..., x_n$ a realization of it, i.e. sample.

Any function $g(x_1, ..., x_n)$ of the sample is called a statistic. For example, the sample mean and variance

$$ar{x} = rac{1}{n}(x_1 + ... + x_n) ext{ and } s^2 = rac{1}{n-1}((x_1 - ar{x})^2 + ... + (x_n - ar{x})^2).$$

are statistics.

Let us have a population distribution of interest with parameter θ and we want to estimate θ based on the data (sample) $x_1, ..., x_n$.

We choose a relevant statistic $g(x_1, ..., x_n)$ as a point estimate for θ , i.e. $\hat{\theta} = g(x_1, ..., x_n)$. The corresponding random variable

 $\hat{\Theta} = g(X_1, ..., X_n)$

is called a point estimator and the distribution of it is called the sampling distribution of the point estimator.

The quality of the point estimator can be measured by

- its expected value $\mathbb{E}(\hat{\Theta})$
- variance Var(Ô)

▶ and/or their combination, the mean square error

$$\mathbb{E}((\hat{\Theta} - \theta)^2) = (\mathbb{E}(\hat{\Theta}) - \theta)^2 + \mathsf{Var}(\hat{\Theta})$$

where the bias $\mathbb{E}(\hat{\Theta}) - \theta$ measures the lack of accuracy (systematic error) and the variance $Var(\hat{\Theta})$ the lack of precision (random error).

If the bias is zero, or $\mathbb{E}(\hat{\Theta}) = \theta$, the estimator is unbiased.

The estimator is consistent if the mean square error

 $\mathbb{E}((\hat{\Theta} - \theta)^2) = (\mathbb{E}(\hat{\Theta}) - \theta)^2 + \mathsf{Var}(\hat{\Theta})$

vanishes as $n \to \infty$, i.e. that

- the estimator is asymptotically unbiased and
- the variance of the estimator vanishes $n \to \infty$.

This means that a consistent estimator $\hat{\Theta}$ approaches the true parameter value.

The sample mean \bar{X} and the sample variance S^2 are unbiased and consistent estimators of the population mean μ and the population variance σ^2 , respectively:

$$\mathbb{E}[ar{X}] = \mu, \quad \mathsf{Var}(ar{X}) = rac{\sigma^2}{n}$$

and

$$\mathbb{E}[S^2] = \sigma^2$$
, $\operatorname{Var}(S^2) = \frac{\sigma^4}{n} \left(\mathbb{E}\left[\left(\frac{X - \mu}{\sigma} \right)^4 \right] - \frac{n - 3}{n - 1} \right)$

Note that the sample standard deviation S is not an unbiased estimator for the population standard deviation σ .

The standard deviation of the estimator $\hat{\Theta}$,

 $\sigma_{\hat{\Theta}} = \sqrt{\mathsf{Var}(\hat{\Theta})}$

is called the standard error of the point estimate. The estimated standard error $s_{\hat{\theta}}$ of the point estimate is a point estimate of $\sigma_{\hat{\Theta}}$ computed from the data.

The standard error of the sample mean is estimated by $s_{\bar{x}} = s/\sqrt{n}$.

• • = • • = •

If the sample size n is large enough,

 $\bar{X} \approx N(\mu, \sigma)$

and

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}pprox {\sf N}(0,1)$$

independently of which distribution the observations come from.

Furthermore, since S is a consistent estimator for σ ,

$$rac{ar{X}-\mu}{S/\sqrt{n}}pprox N(0,1).$$

A $100(1 - \alpha)$ % confidence interval for μ can be approximated by using normal distribution:

$$I_{\mu} \approx \bar{x} \pm z(\alpha/2)s/\sqrt{n} = \bar{x} \pm z(\alpha/2)s_{\bar{x}},$$

where $\Phi(z(\alpha)) = 1 - \alpha$, $\alpha \in (0, 1)$.

- It can be seen that
 - the higher the confidence level, the wider the confidence interval
 - the larger the sample variance, the wider the confidence interval
 - the larger the sample size n, the narrower the interval.

If the sample size n is small

- \overline{X} is (approximatively) normal only if the sample $x_1, ..., x_n$ comes from a normal distribution.
- σ cannot be replaced by *S*.

Given that the sample comes from a normal distribution, i.e. $X_i \sim N(\mu, \sigma)$, i = 1, ..., n, an (exact) $100(1 - \alpha)$ % confidence interval for μ can be computed by using the t-distribution since

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}.$$

The confidence interval for μ becomes

$$I_{\mu} = \bar{x} \pm t_{n-1}(\alpha/2)s/\sqrt{n} = \bar{x} \pm t(\alpha/2)s_{\bar{x}},$$

where $t_{n-1}(\alpha)$ is defined similarly to $z(\alpha)$.

Interval estimation: exact confidence interval for σ^2

We saw earlier that if the observations come from $N(\mu, \sigma)$, then

$$\frac{\sum\limits_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2} \sim \chi^2_{n-1}$$

and

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}.$$

A $100(1-\alpha)\%$ confidence interval for σ^2 is then

$$I_{\sigma^2} = \left(\frac{(n-1)s^2}{x_{n-1}(\alpha/2)}, \frac{(n-1)s^2}{x_{n-1}(1-\alpha/2)}\right)$$

where $x_{n-1}(\alpha)$ is defined similarly to $z(\alpha)$ and can be found in the χ^2 table.

A B A A B A

Dichotomous data

In dichotomous data, only two values 0 and 1 are possible, e.g. "heads" and "tails" in a coin toss if we convert the data as heads= 1 and tails= 0. In such a case, the Bernoulli distribution (for the outcome X) with parameter

p = P(X = 1)

can be used as the population distribution.

Then, $\mu = p$ and the sample mean \bar{x} is the same as the sample proportion \hat{p} . The sample proportion is an unbiased and consistent estimator for p. The standard error for the sample proportion can be estimated by

$$s_{\hat{p}} = \sqrt{rac{\hat{p}(1-\hat{p})}{n-1}}.$$

When the sample size is large, approximative confidence intervals can be estimated using the normal approximation and the estimated standard error above.

Simple random sampling

A finite population of size *N* can be thought as a set of *N* elements characterized by their numerical values $x \in \{a_1, ..., a_N\}$. Then, the population distribution is

$$\mathsf{P}(X=x)=\frac{N_x}{N},$$

where N_x is the number of elements with $a_i = x$.

Random samples from a finite population can be taken

- 1. with replacement resulting in a random sample consisting of independent and identically distributed observations.
- 2. without replacement resulting in a simple random sample consisting of identically distributed but dependent observations.

When the sample size *n* is small compared to the population size *N* (less than 5% of the population), the two approaches are almost the same.

In the case of simple random sample $(X_1, ..., X_n)$ with dependent observations, the sample mean \overline{X} is an unbiased and consistent estimator for the population mean with

$$\mathbb{E}(\bar{X}) = \mu$$
 and $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}(1 - \frac{n-1}{N-1})$

and $1 - \frac{n-1}{N-1} = \frac{N-n}{N-1}$ is called the finite population correction.

The sample variance S^2 is a biased estimator for the population variance σ^2 in this case since

$$\mathbb{E}(S^2) = \sigma^2 \frac{N}{N-1}.$$

Replacing σ^2 by $\frac{N-1}{N}S^2$ in the formula for $Var(\bar{X})$, we obtain an unbiased estimator for $Var(\bar{X})$, namely

$$S_{\bar{X}}^2 = \frac{S^2}{n}(1-\frac{n}{N}).$$

If we have a rather large sample (more than 5% of the population) and use simple random sampling (without replacement), the corrected estimator for the variance should be used.

For example, for dichotomous data, the standard error becomes

$$s_{\hat{
ho}} = \sqrt{rac{\hat{
ho}(1-\hat{
ho})}{n-1}}\sqrt{1-rac{n}{N}}$$

which will be used e.g. when constructing confidence intervals.

Additional information on the population structure can be used to reduce the sampling error

 \rightarrow stratified sampling.

The total population is divided into k strata. For example, the population of Swedish school children is divided into four strata: southern Sweden, western Sweden, eastern Sweden, and northern Sweden.

The total population size is N and it consists of k strata sizes $N_1, ..., N_k$ such that $N = N_1 + ... + N_k$. The strata fractions $w_i = N_i/N$, i = 1, ..., k are assumed to be known.

• • = • • = •

Given the (unknown) strata means and standard deviations μ_i and σ_i , respectively, the population mean and variance become

$$\mu = \sum_{i=1}^{k} w_i \mu_i \text{ and } \sigma^2 = \overline{\sigma^2} + \sum_{i=1}^{k} w_i (\mu_j - \mu)^2$$

where $\overline{\sigma^2} = \sum_{i=1}^{k} w_i \sigma_i^2$ and $w_i + \dots + w_k = 1$.

,

(E) (E)

Stratified random sampling: estimation of the population mean

Take k independent samples, one from each strata, with sample sizes $n_1, ..., n_k$ and compute the sample means $\bar{x}_1, ..., \bar{x}_k$. Then, the stratified sample mean is

$$\bar{x}_s = \sum_{i=1}^k w_i \bar{x}_i.$$

which is an unbiased estimate for μ .

Stratified random sampling: estimation of the variance of the sample mean

The variance of \bar{X}_{s} is

$$\operatorname{Var}(\bar{X}_s) = \sum_{i=1}^k \operatorname{Var}(w_i \bar{X}_i) = \sum_{i=1}^k w_i^2 \operatorname{Var}(\bar{X}_i) = \sum_{i=1}^k \frac{w_i^2 \sigma_i^2}{n_i}$$

and can be estimated by

$$\sum_{i=1}^k \frac{w_i^2 s_i^2}{n_i},$$

where s_i is the sample standard deviation for strata *i*.

We have n observations from the population of size N using stratified sampling, where n is much smaller than N (random sampling and simple random sampling almost the same).

What is the allocation $n_1, ..., n_k$ of the *n* observations that minimises the standard error $s_{\bar{x}}$ of \bar{x} ?

The allocation, where

$$n_i = n \frac{w_i \sigma_i}{\bar{\sigma}}$$

and $\bar{\sigma} = w_i \sigma_1 + ... + w_k \sigma_k$ gives the smallest error, namely

$$\mathsf{Var}(\bar{X}_{so}) = \frac{(\bar{\sigma})^2}{n}$$

where \bar{X}_{so} refers to the mean using the optimal allocation.

Since σ_i 's are often unknown, the observations are often allocated proportionally to the strata sizes so that $n_i = nw_i$, i = 1, ..., k.

This gives the usual sample mean \bar{x} but a slightly larger variance

$$\operatorname{Var}(\bar{X}_{sp}) = rac{\overline{\sigma^2}}{n},$$

where $\overline{\sigma^2} = w_1 \sigma_1^2 + \ldots + w_k \sigma_k^2$.

Sample means and sample variances:

	Sample	Variance of
	mean	sample mean
Random sample	x	$\frac{\sigma^2}{n}$
Stratified optimal	$\bar{x}_{so} = \sum_{i=1}^{k} w_i \bar{x}_i$	$\frac{(\bar{\sigma})^2}{n}$
Stratified proportional	$\bar{x}_{sp} = \bar{x}$	$\frac{\overline{\sigma^2}}{n}$
where $\overline{\sigma} = w_1\sigma_1 + + w_k\sigma_k$, $\overline{\sigma^2} = w_1\sigma_1^2 + + w_k\sigma_k^2$, and		
$\frac{(\bar{\sigma})^2}{n} \leq \frac{\overline{\sigma^2}}{n} \leq \frac{\sigma^2}{n}.$		

▲御▶ ▲ 臣▶ ▲ 臣▶ 二 臣