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Aila Särkkä Statistical inference (MVE155/MSG200)



Student representatives

▶ Rasmus Andersson (MPBME)

▶ Martin Ekerstedt (MPBME)
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Aila Särkkä Statistical inference (MVE155/MSG200)



Topics

▶ Random sample: definition

▶ Point estimation

▶ Interval estimation

▶ Random sampling versus simple random sampling

▶ Stratified sampling
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Population and random sample

▶ We have a population of interest and are interested in some
property of it .

▶ Using probability theory, we can draw conclusions of a
population based on only a sample, a subset of the population.

▶ A random sample of size n from the distribution of a random
variable X is a collection of independent random variables
that have the same distribution as X .

▶ Statistical inference is an estimate, prediction, or some other
generalization of a large population that we make based on a
random sample from the population.
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Population and random sample

Let X1, ...,Xn be a vector of iid random variables, i.e. a random
sample, and x1, ..., xn a realization of it, i.e. sample.

Any function g(x1, ..., xn) of the sample is called a statistic. For
example, the sample mean and variance

x̄ =
1

n
(x1 + ...+ xn) and s2 =

1

n − 1
((x1 − x̄)2 + ...+ (xn − x̄)2).

are statistics.
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Point estimation

Let us have a population distribution of interest with parameter θ
and we want to estimate θ based on the data (sample) x1, ..., xn.

We choose a relevant statistic g(x1, ..., xn) as a point estimate for
θ, i.e. θ̂ = g(x1, ..., xn). The corresponding random variable

Θ̂ = g(X1, ...,Xn)

is called a point estimator and the distribution of it is called the
sampling distribution of the point estimator.
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Point estimation

The quality of the point estimator can be measured by

▶ its expected value E(Θ̂)

▶ variance Var(Θ̂)

▶ and/or their combination, the mean square error

E((Θ̂− θ)2) = (E(Θ̂)− θ)2 + Var(Θ̂)

where the bias E(Θ̂)− θ measures the lack of accuracy
(systematic error) and the variance Var(Θ̂) the lack of
precision (random error).
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Point estimation: unbiasedness and consistency

If the bias is zero, or E(Θ̂) = θ, the estimator is unbiased.

The estimator is consistent if the mean square error

E((Θ̂− θ)2) = (E(Θ̂)− θ)2 + Var(Θ̂)

vanishes as n → ∞, i.e. that

▶ the estimator is asymptotically unbiased and

▶ the variance of the estimator vanishes n → ∞.

This means that a consistent estimator Θ̂ approaches the true
parameter value.
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Sample mean, variance, and standard deviation

The sample mean X̄ and the sample variance S2 are unbiased and
consistent estimators of the population mean µ and the population
variance σ2, respectively:

E[X̄ ] = µ, Var(X̄ ) =
σ2

n

and

E[S2] = σ2, Var(S2) =
σ4

n

(
E

[(
X − µ

σ

)4
]
− n − 3

n − 1

)
.

Note that the sample standard deviation S is not an unbiased
estimator for the population standard deviation σ.
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Standard error

The standard deviation of the estimator Θ̂,

σΘ̂ =

√
Var(Θ̂)

is called the standard error of the point estimate. The estimated
standard error sθ̂ of the point estimate is a point estimate of σΘ̂
computed from the data.

The standard error of the sample mean is estimated by sx̄ = s/
√
n.
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Interval estimation: approximate confidence interval for µ

If the sample size n is large enough,

X̄ ≈ N(µ, σ)

and
X̄ − µ

σ/
√
n
≈ N(0, 1)

independently of which distribution the observations come from.

Furthermore, since S is a consistent estimator for σ,

X̄ − µ

S/
√
n
≈ N(0, 1).
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Interval estimation: approximate confidence interval for µ

A 100(1− α)% confidence interval for µ can be approximated by
using normal distribution:

Iµ ≈ x̄ ± z(α/2)s/
√
n = x̄ ± z(α/2)sx̄ ,

where Φ(z(α)) = 1− α, α ∈ (0, 1).

It can be seen that

▶ the higher the confidence level, the wider the confidence
interval

▶ the larger the sample variance, the wider the confidence
interval

▶ the larger the sample size n, the narrower the interval.
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Interval estimation: exact confidence interval for µ

If the sample size n is small

▶ X̄ is (approximatively) normal only if the sample x1, ..., xn
comes from a normal distribution.

▶ σ cannot be replaced by S .

Given that the sample comes from a normal distribution, i.e.
Xi ∼ N(µ, σ), i = 1, .., n, an (exact) 100(1− α)% confidence
interval for µ can be computed by using the t-distribution since

X̄ − µ

S/
√
n
∼ tn−1.

The confidence interval for µ becomes

Iµ = x̄ ± tn−1(α/2)s/
√
n = x̄ ± t(α/2)sx̄ ,

where tn−1(α) is defined similarly to z(α).
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Interval estimation: exact confidence interval for σ2

We saw earlier that if the observations come from N(µ, σ), then

n∑
i=1

(Xi − X̄ )2

σ2
∼ χ2

n−1

and
(n − 1)S2

σ2
∼ χ2

n−1.

A 100(1− α)% confidence interval for σ2 is then

Iσ2 =

(
(n − 1)s2

xn−1(α/2)
,

(n − 1)s2

xn−1(1− α/2)

)
,

where xn−1(α) is defined similarly to z(α) and can be found in the
χ2 table.
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Dichotomous data

In dichotomous data, only two values 0 and 1 are possible, e.g.
”heads” and ”tails” in a coin toss if we convert the data as
heads= 1 and tails= 0. In such a case, the Bernoulli distribution
(for the outcome X ) with parameter

p = P(X = 1)

can be used as the population distribution.

Then, µ = p and the sample mean x̄ is the same as the sample
proportion p̂. The sample proportion is an unbiased and consistent
estimator for p. The standard error for the sample proportion can
be estimated by

sp̂ =

√
p̂(1− p̂)

n − 1
.

When the sample size is large, approximative confidence intervals
can be estimated using the normal approximation and the
estimated standard error above.
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Simple random sampling

A finite population of size N can be thought as a set of N
elements characterized by their numerical values x ∈ {a1, ..., aN}.
Then, the population distribution is

P(X = x) =
Nx

N
,

where Nx is the number of elements with ai = x .

Random samples from a finite population can be taken

1. with replacement resulting in a random sample consisting of
independent and identically distributed observations.

2. without replacement resulting in a simple random sample
consisting of identically distributed but dependent
observations.

When the sample size n is small compared to the population size
N (less than 5% of the population), the two approaches are almost
the same.
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Simple random sampling

In the case of simple random sample (X1, ...,Xn) with dependent
observations, the sample mean X̄ is an unbiased and consistent
estimator for the population mean with

E(X̄ ) = µ and Var(X̄ ) =
σ2

n
(1− n − 1

N − 1
)

and 1− n−1
N−1 = N−n

N−1 is called the finite population correction.
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Simple random sampling: sample variance

The sample variance S2 is a biased estimator for the population
variance σ2 in this case since

E(S2) = σ2 N

N − 1
.

Replacing σ2 by N−1
N S2 in the formula for Var(X̄ ), we obtain an

unbiased estimator for Var(X̄ ), namely

S2
X̄
=

S2

n
(1− n

N
).
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Simple random sampling

If we have a rather large sample (more than 5% of the population)
and use simple random sampling (without replacement), the
corrected estimator for the variance should be used.

For example, for dichotomous data, the standard error becomes

sp̂ =

√
p̂(1− p̂)

n − 1

√
1− n

N

which will be used e.g. when constructing confidence intervals.
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Stratified random sampling

Additional information on the population structure can be used to
reduce the sampling error
→ stratified sampling.

The total population is divided into k strata. For example, the
population of Swedish school children is divided into four strata:
southern Sweden, western Sweden, eastern Sweden, and northern
Sweden.

The total population size is N and it consists of k strata sizes
N1, ...,Nk such that N = N1 + ...+ Nk . The strata fractions
wi = Ni/N, i = 1, ..., k are assumed to be known.
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Stratified random sampling: mean and variance

Given the (unknown) strata means and standard deviations µi and
σi , respectively, the population mean and variance become

µ =
k∑

i=1

wiµi and σ2 = σ2 +
k∑

i=1

wi (µj − µ)2,

where σ2 =
k∑

i=1
wiσ

2
i and wi + ...+ wk = 1.
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Stratified random sampling: estimation of the population
mean

Take k independent samples, one from each strata, with sample
sizes n1, ..., nk and compute the sample means x̄1, ..., x̄k . Then, the
stratified sample mean is

x̄s =
k∑

i=1

wi x̄i .

which is an unbiased estimate for µ.
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Stratified random sampling: estimation of the variance of
the sample mean

The variance of X̄s is

Var(X̄s) =
k∑

i=1

Var(wi X̄i ) =
k∑

i=1

w2
i Var(X̄i ) =

k∑
i=1

w2
i σ

2
i

ni

and can be estimated by

k∑
i=1

w2
i s

2
i

ni
,

where si is the sample standard deviation for strata i .
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Stratified random sampling: optimal allocation

We have n observations from the population of size N using
stratified sampling, where n is much smaller than N (random
sampling and simple random sampling almost the same).

What is the allocation n1, ..., nk of the n observations that
minimises the standard error sx̄ of x̄?

The allocation, where

ni = n
wiσi
σ̄

and σ̄ = wiσ1 + ...+ wkσk gives the smallest error, namely

Var(X̄so) =
(σ̄)2

n

where X̄so refers to the mean using the optimal allocation.
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Stratified random sampling: proportional allocation

Since σi ’s are often unknown, the observations are often allocated
proportionally to the strata sizes so that ni = nwi , i = 1, ..., k.

This gives the usual sample mean x̄ but a slightly larger variance

Var(X̄sp) =
σ2

n
,

where σ2 = w1σ
2
1 + ...+ wkσ

2
k .
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Comparison

Sample means and sample variances:

Sample Variance of
mean sample mean

Random sample x̄ σ2

n

Stratified optimal x̄so =
k∑

i=1
wi x̄i

(σ̄)2

n

Stratified proportional x̄sp = x̄ σ2

n

where σ̄ = w1σ1 + ...+ wkσk , σ2 = w1σ
2
1 + ...+ wkσ

2
k , and

(σ̄)2

n
≤ σ2

n
≤ σ2

n
.
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