
Statistical inference (MVE155/MSG200)

Hypothesis testing
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Scientific method

▶ Observation/question, for example ”Are children in Sweden
taller today than 50 years ago?”

▶ Collect information: What is known about the topic? Has
somebody else posed the same question?

▶ Construct a hypothesis: I believe that children in Sweden
today are taller than children in Sweden 50 years ago.

→ Researcher’s hypothesis (alternative hypothesis)

The null hypothesis is that there is no difference between the
heights today and 50 years ago.
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Scientific method (continues)

▶ Make experiments: Collect data from, say, 5 and 55 year olds
on their height at the age of 5.

▶ Analyze the data: How? Which method? Here, it could be a
two sample t-test.

▶ Report the results: Did you reject the null hypothesis? What
are the concequences if you did/did not?

▶ New observations/questions.
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Set-up: Two hypotheses

H0: The effect of interest is zero
(e.g. there is no difference between the average heights)

H1: The effect of interest is not zero
(e.g. the average height of 5 year olds today is larger than the
average height of 5 year olds 50 years ago)

To decide whether we can reject the null hypothesis (and believe
that our own is true), we collect data, x1, ..., xn, and from that,
compute a test statistic t = t(x1, ..., xn), which is chosen so that
the distribution of the corresponding random variable T
(stochastic version of t) is known.
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Rejection region

Find a rejection region R so that the null hypothesis H0 is rejected
if and only if the test statistic t ∈ R. Then,

Do not reject H0 Reject H0 in favour to H1

H0 true True negative False positive (type I error)
H1 true False negative (type II error) True positive
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Some important conditional probabilities

▶ Significance level α

α = P(T ∈ R|H0)

which is also the probability of the type I error.

▶ Specificity of the test

1− α = 1− P(T ∈ R|H0) = P(T /∈ R|H0)

▶ Probability of the type II error

β = P(T /∈ R|H1)

▶ Power or sensitivity of the test

1− β = 1− P(T /∈ R|H1) = P(T ∈ R|H1)
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How to choose α and β?

We would like both α and β be small and specificity and sensitivity
(power) large. However, when we decrease α, β increases.
→ Have a large sample size.

We fix α, typically 5%, and choose R based on

α = P(T ∈ R|H0).

Then, compute
β = P(T /∈ R|H1)

and the power of the test (given n).
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p-value

Let us have a test statistic T and its observed value (computed
from the data) tobs and we test the null hypothesis H0. Then, the
p-value is the probability that the test statistic takes the observed
value tobs or even a more extreme value when H0 is true.

If the p-value is small (say, less than 0.05), the null hypothesis can
be rejected.
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Example

Your friend claims that they have exceptional skills and can guess
the suit of a card very well. You show 100 cards to your friend and
they guess correctly the suit of 30 of the cards. Does this indicate
that they have exceptional skills?

We can use

▶ binomial test with the number of right guesses
C ∼ Bin(100, 0.25) under H0 of pure guessing

▶ large sample test based on normal approximation
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Large sample test for proportion

We would like to test H0 : p = p0, where p is the proportion of
successes (1’s) in n independent Bernoulli trials.

We have a random sample of size n from the Bernoulli distribution
Bin(1, p) with unknown p. The number of successes C has the
distribution Bin(n, p) and p can be estimated by the sample
proportion p̂ = c/n, which is the ML estimate for p.

Given H0 : p = p0, if n is large enough, we can use the test statistic

Z =
C − np0√
np0(1− p0)

=
np̂ − np0

n
√
p0(1− p0)/n

=
p̂ − p0√

p0(1− p0)/n

which is approximatively N(0, 1)-distributed.
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Large sample test for proportion: rejection region

The rejection region depends on H1 and α:

H1 Rejection region

p > p0 R = {Z ≥ z(α)}
p < p0 R = {Z ≤ −z(α)}
p ̸= p0 R = {Z ≤ −z(α/2)} ∪ {Z ≥ z(α/2)}

where z(α) can be found using Φ(z(α)) = 1− α.

To test H0 : p = p0 against H1 : p ̸= p0, the same conclusion can
be drawn based on a 100(1− α)% confidence interval for p: If the
confidence interval does not cover p0, H0 can be rejected.
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Tests for mean, H0 : µ = µ0

For large samples, we can test H0 : µ = µ0 by using the test
statistic

T0 =
X̄ − µ0

sx̄

which is approximatively N(0, 1)-distributed (sx̄ is the sample
standard deviation of x̄) since

▶ X̄ is approximately normally distributed

▶ sample sample deviation S is a consistent estimator for the
population standard deviation σ, σ can be replaced by sx̄ .

For small samples, we have to assume that X1, ...,Xn ∼ N(µ, σ)
and use the test statistic (one sample t-test)

T0 ∼ tn−1.

To test H0 : µ = µ0 against H1 : µ ̸= µ0, the same conclusion can
be drawn based on a 100(1− α)% confidence interval for µ: If the
confidence interval does not cover µ0, H0 can be rejected.
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Likelihood ratio test: simple hypotheses

We can test simple hypotheses

H0 : θ = θ0 against H1 : θ = θ1

by using the ratio of the two likelihood functions

L(θ0)

L(θ1)

as the test statistic.

If the ratio is large, θ0 is more likely and if it is small, θ1 is more
likely given the observed data.
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Likelihood ratio test: nested hypotheses

The hypotheses do not have to be simple: We can also test

H0 : θ ∈ Ω0 against H1 : θ /∈ Ω0 (θ ∈ Ω \ Ω0),

where Ω is a parameter set and Ω0 ⊂ Ω. Often, we use nested
hypotheses

H0 : θ ∈ Ω0 against H1 : θ ∈ Ω.
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Likelihood ratio test: nested hypotheses

We find two ML estimates

▶ θ̂0 which maximizes L(θ) when θ ∈ Ω0

▶ θ̂ which maximizes L(θ) when θ ∈ Ω

and compute the likelihood ratio

w =
L(θ̂0)

L(θ̂)
.

The null hypothesis is rejected if w is small or

−ln(w) = ln(L(θ̂))− ln(L(θ̂0)) = l(θ̂)− l(θ̂0)

is large.

Note that 0 < w ≤ 1 and therefore, −ln(w) ≥ 0.
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Likelihood ratio test: nested hypotheses

It can be shown that under H0,

−2ln(W ) ≈ χ2
df ,

where df = dim(Ω)− dim(Ω0) and dim refers to the number of
free parameters.

Example: Let us have a random sample from a N(µ, σ), where σ
known. We test

H0 : µ = µ0 against H1 : µ ̸= µ0.

Then, under H0, there are no free parameters and under H1, there
is one. Therefore, df = dim(Ω)− dim(Ω0) = 1− 0 = 1.
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χ2 goodness-of-fit test

We have a random sample of size n, where each observation
belongs to one of the J classes with probabilities (p1, ..., pJ). The
joint distribution of the corresponding counts is multinomial,
(C1, ...,CJ) ∼ Mn(n; p1, ..., pJ), with

P(C1 = c1, ...,CJ = cJ) =
n!

c1! · · · cJ !
pc11 · · · pcJJ .

The general parameter space is

Ω = {(p1, .., pJ) : p1 + ...+ pJ = 1, pi ≥ 0 for each i}

which has the dimension dim(Ω) = J − 1.
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χ2 goodness-of-fit test

Test

H0 : (p1, ..., pJ) ∈ Ω0 against H1 : (p1, ..., pJ) ∈ Ω,

where

Ω0 = {(p1, .., pJ) ∈ Ω : (p1, ..., pJ) = (p1(θ), ..., pJ(θ))},

which has the dimension dim(Ω1) = 1 if the parameter θ needs to
be estimated and dim(Ω0) = 0 if θ is fixed, i.e (pi ’s are given
constants.
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