Statistical inference（MVE155／MSG200）

Summarising data

Summary

- Estimating distribution function
- Quantiles and quantile-quantile plots
- Estimating density function
- Skewness and kurtosis
- Measures of dispersion
- Boxplot

Empirical distribution function

Distribution function F of a random variable X is defined as

$$
F(x)=\mathrm{P}(X \leq x)=\left\{\begin{array}{c}
\int_{-\infty}^{x} f(y) d y \\
\sum_{y \leq x} \mathrm{P}(X=y)
\end{array}\right.
$$

The empirical distribution function based on the sample $\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\hat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(x_{i} \leq x\right)
$$

where \mathbb{I} is an indicator function, is an unbiased and consistent estimator for $F(x)$.

Empirical distribution function

As a function of $x, \hat{F}(x)$ is a distribution function for a uniform random variable Y with

$$
\mathrm{P}\left(Y=x_{i}\right)=\frac{1}{n}, \quad i=1, \ldots, n
$$

if $x_{i} \neq x_{j}$ for all $i \neq j$. We have that (even when some of the x_{i} 's coinside)

$$
\mathbb{E}(Y)=\sum_{i=1}^{n} x_{i} \mathrm{P}\left(Y=x_{i}\right)=\sum_{i=1}^{n} \frac{x_{i}}{n}=\bar{x}
$$

and

$$
\begin{aligned}
\operatorname{Var}(Y) & =\mathbb{E}\left(Y^{2}\right)-(\mathbb{E}(Y))^{2} \\
& =\sum_{i=1}^{n} x_{i}^{2} \mathrm{P}\left(Y=x_{i}\right)-\left(\sum_{i=1}^{n} x_{i} \mathrm{P}\left(Y=x_{i}\right)\right)^{2} \\
& =\overline{x^{2}}-(\bar{x})^{2}=\frac{n-1}{n} s^{2}
\end{aligned}
$$

and $\frac{n-1}{n} s^{2}$ is called empirical variance.

Survival function

When studying life length L, survival function

$$
S(x)=\mathrm{P}(L>x)=1-\mathrm{P}(L \leq x)=1-F(x), \quad x \geq 0
$$

and its empirical counterpart

$$
\hat{S}(x)=1-\hat{F}(x)
$$

are often used since it gives you the probability of living longer than a certain age x.

Hazard function

Mortality rate at age x can be defined as $f(x) / S(x)$ since

$$
\frac{\mathrm{P}(x<L \leq x+\delta \mid L \geq x)}{\delta} \rightarrow \frac{f(x)}{S(x)}
$$

as $\delta \rightarrow 0$. This is called a hazard rate, i.e.

$$
h(x)=\frac{f(x)}{S(x)}=\frac{f(x)}{1-F(x)}
$$

For the exponential distribution, the hazard rate is constant.
Hazard rate is also the negative slope of the log survival function since

$$
-\frac{d}{d x} \ln (S(x))=-\frac{S^{\prime}(x)}{S(x)}=\frac{f(x)}{S(x)}
$$

Quantiles

The inverse of the distribution function F, F^{-1}, is called a quantile function

$$
Q(p)=F^{-1}(p), \quad 0<p<1
$$

and the p quantile is defined as

$$
x_{p}=Q(p)
$$

For an ordered sample $\left(x_{(1)}, \ldots, x_{(n)}\right)$, where $x_{(1)}=\min \left\{x_{1}, \ldots, x_{n}\right\}$ and $x_{(n)}=\max \left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\hat{F}\left(x_{(k)}\right)=\frac{k}{n} \quad \text { and } \quad \hat{F}\left(x_{(k)}-\epsilon\right)=\frac{k-1}{n}
$$

(where $\epsilon>0$ small). Therefore, $x_{(k)}$ is called the empirical $\frac{k-0.5}{n}$-quantile.

Most commonly used quantiles

- median $m=x_{0.5}=Q(0.5)$
- lower quartile $x_{0.25}=Q(0.25)$
- upper quartile $x_{0.75}=Q(0.75)$

We have two independent equal sized samples, $\left(x_{1}, \ldots, x_{n}\right)$ with the distribution function F_{1} and quantile function Q_{1} and $\left(y_{1}, \ldots, y_{n}\right)$ with the distribution function F_{2} and quantile function Q_{2}. We want to test whether these two samples come from the same distribution, i.e. we test

$$
H_{0}: F_{1} \equiv F_{2}
$$

or equivalently,

$$
H_{0}: Q_{1} \equiv Q_{2}
$$

Graphically, this can be done by a $Q Q$ plot which is a scatter plot with coordinates $\left(x_{(k)}, y_{(k)}\right), k=1, \ldots, n$.

QQ-plot

If the $Q Q$ plot is approximately a 45° line, the distributions are approximatively the same (and H_{0} is not rejected).

If the $Q Q$ plot is a straight line with some other angle, X and Y have a linear relationship

$$
Y=a+b X
$$

meaning that

$$
F_{1}(x)=F_{2}(a+b x)
$$

and

$$
Q_{2}(p)=a+b Q_{1}(p) .
$$

Normal QQ-plot

To test whether the data can be considered being normally distributed, we define

$$
y_{k}=\Phi^{-1}\left(\frac{k-0.5}{n}\right), \quad k=1, \ldots, n,
$$

where Φ^{-1} is the quantile function for the standard normal distribution $N(0,1)$. Then, plot

$$
\left(x_{(1)}, y_{(1)}\right), \ldots,\left(x_{(n)}, y_{(n)}\right)
$$

and check whether the QQ-plot is a straight line.

Normal QQ-plot: heavy tails

Red curve: $N(0,1)$ Black curve: distribution with heavy tails

Normal QQ-plot: light tails

Red curve: $N(0,1)$ Black curve: distribution with light tails

Median

Median is the 0.5 quantile, $m=x_{0.5}=Q(0.5)$, and

$$
\mathrm{P}(X<m)=\mathrm{P}(X>m)=0.5
$$

It can be estimated from the ordered sample $x_{(1)}, \ldots, x_{(n)}$ by

$$
\hat{m}=\left\{\begin{array}{l}
x_{(k)} \quad \text { if } \quad n=2 k-1 \quad \text { (odd) } \\
\frac{1}{2}\left(x_{(k)}+x_{(k+1)}\right) \quad \text { if } \quad n=2 k \quad \text { (even) }
\end{array}\right.
$$

Confidence interval for median

Let us have a sample $\left(x_{1}, \ldots, x_{n}\right)$ (without ties) from a continuous population distribution and let

$$
Y=\sum_{i=1}^{n} \mathbb{I}\left(x_{i} \leq m\right)
$$

Then, $Y \sim \operatorname{Bin}(n, 0.5)$ and a $100\left(1-2 p_{k}\right) \%$ confidence interval for m becomes

$$
I_{m}=\left(x_{(k)}, x_{(n-k+1)}\right),
$$

where

$$
p_{k}=\mathrm{P}(Y<k) .
$$

Y is also used as a test statistic in the sign test, which can be used instead of the one sample t-test when the sample size is small and the data not normal. Reject the $H_{0}: m=m_{0}$ in the favour of $H_{1}: m \neq m_{0}$ if the value of Y is not within the confidence interval.

Density estimation

A density function can be estimated by using the histograms of the observed counts

$$
c_{j}=\sum_{i=1}^{n} \mathbb{I}\left(x_{i} \in \operatorname{cell}_{j}\right)
$$

where the observation interval is divided into adjacent cells of width h. The density function can be estimated by the scaled histogram

$$
f_{h}(x)=\frac{c_{j}}{n h} \quad \text { for } \quad x \in \text { cell }_{j} .
$$

Often, the scaled histogram is smoothened resulting in a kernel estimate with bandwidth h :

$$
f_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} \phi\left(\frac{x-x_{i}}{h}\right)
$$

where (for example) $\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right)$.

Kernel estimation

Kernel estimation: selection of bandwidth

Skewness and kurtosis

Let the random variable X come from a distribution with mean μ and variance σ^{2}. For the standardized version of X,

$$
Z=\frac{X-\mu}{\sigma}
$$

the first moment (mean) $\mu_{1}=\mathbb{E}(Z)=0$ and the second moment $\mu_{2}=\mathbb{E}\left(Z^{2}\right)=1$.

Population coefficient for skewness and population kurtosis are defined as

$$
\mu_{3}=\mathbb{E}\left(Z^{3}\right) \quad \text { and } \quad \mu_{4}=\mathbb{E}\left(Z^{4}\right)
$$

which, given \bar{x} and s, can be estimated by

$$
m_{3}=\frac{1}{n s^{3}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3} \quad \text { and } \quad m_{4}=\frac{1}{n s^{4}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{4}
$$

Skewness and kurtosis

For normal distribution, $\mu_{3}=0$ (symmetric) and $\mu_{4}=3$ (reference, not heavy or light tails).

Skewness

- $\mu_{3}=0$, symmetric
- $\mu_{3}>0$, skewed to the right
- $\mu_{3}<0$, skewed to the left

Kurtosis

- $\mu_{4}>3$, heavy tails
- $\mu_{4}<3$, light tails

Measures of dispersion

- Sample variance and standard deviation: S^{2} and S
- Sample range: $x_{(n)}-x_{(1)}$
- Interquartile range, IQR: $x_{0.75}-x_{0.25}$
- Median of the absolute values of deviations, MAD: sample median of $\left\{\left|x_{i}-\hat{m}\right|, i=1, \ldots, n\right\}$

Boxplots

- Box: from the lower quartile to the upper quartile with the median indicated with the thicker line.
- Whiskers: Based on the 1.5 IQR value.
- Outliers: Observations outside the whiskers.

