Statistical inference (MVE155/MSG200)

Comparing two samples

Set-up

We have two samples

- (x₁,...,x_n) from a population with mean μ₁ and variance σ₁²
 (y₁,...,y_m) from a population with mean μ₂ and variance σ₂², and want to compare the two populations. We have two cases
 - Two independent samples
 - Paired samples

We compare

- population means/medians
- population proportions
- entire population distributions

Two independent samples: Large sample test for the difference between two means

If the sample sizes *n* and *m* are large, we can test the null hypothesis $H_0: \mu_1 = \mu_2$ by using the test statistic

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{S_{\bar{X}}^2 + S_{\bar{Y}}^2}} = \frac{\bar{X} - \bar{Y}}{\sqrt{S_{\bar{X}}^2 + S_{\bar{Y}}^2}} \approx N(0, 1),$$

(under H_0) since

$$\operatorname{Var}(ar{X} - ar{Y}) = \operatorname{Var}(ar{X}) + \operatorname{Var}(ar{Y}) = rac{\sigma_1^2}{n} + rac{\sigma_2^2}{m},$$

which can be estimated by the sum of the corresponding sample variances $S_{\bar{X}}^2$ and $S_{\bar{Y}}^2$. Equivalently, when $H_1 : \mu_1 \neq \mu_2$, one can compute the approximate $100(1 - \alpha)\%$ confidence interval

$$I_{\mu_1-\mu_2}pproxar{x}-ar{y}\pm z(lpha/2)\sqrt{s_{ar{x}}^2+s_{ar{y}}^2}$$

and reject the null hypothesis if the interval does not cover zero.

Two independent samples: Two-sample t-test for the difference between two means

If the sample sizes n and m are small, we cannot assume that

$$Z = rac{ar{X} - ar{Y}}{\sqrt{S^2_{ar{X}} + S^2_{ar{Y}}}} pprox {\sf N}(0,1).$$

We assume that the two population distributions are normal, i.e. $X \sim N(\mu_1, \sigma_1)$ and $Y \sim N(\mu_2, \sigma_2)$, and that $\sigma_1^2 = \sigma_2^2 = \sigma^2$.

The common variance is estimated by the pooled sample variance

$$s_p^2 = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^m (y_i - \bar{y})^2}{n+m-2}$$

which (its stochastic version) is an unbiased estimator for σ^2 .

Two independent samples: Two-sample t-test for the difference between two means

Under the normality assumption, the null hypothesis $H_0: \mu_1 = \mu_2$ can be tested by using the test statistic

$$T = rac{ar{X} - ar{Y}}{S_p \sqrt{rac{1}{n} + rac{1}{m}}} \sim t_{n+m-2}.$$

since

$$\operatorname{Var}(\bar{X} - \bar{Y}) = \sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right) = \sigma^2 \left(\frac{n+m}{nm}\right).$$

Equivalently, one can compute a $100(1 - \alpha)$ % confidence interval

$$I_{\mu_1-\mu_2} = \bar{x} - \bar{y} \pm t_{n+m-2}(\alpha/2) \cdot s_p \sqrt{\frac{n+m}{nm}}$$

and reject the null hypothesis if the interval does not cover zero.

Two independent samples: rank sum test for the difference of the population distributions

If the sample sizes are small and the samples cannot be assumed to come from normal distributions, non-parametric tests, such as the rank sum test, should be used.

We have two independent samples, $(x_1, ..., x_n)$ from some population distribution F_1 and $(y_1, ..., y_m)$ from some population distribution F_2 and we test

 $H_0: F_1 = F_2$ against $H_1: F_1 \neq F_2$.

The rank sum test is performed as follows:

 $1. \ \mbox{Pool}$ the samples and replace the data values by their ranks

1, 2, ..., n + m, starting from the smallest value.

2. Compute two test statistics

• $r_1 = \text{sum of the ranks of } x - \text{observations}$

▶ $r_2 = \text{sum of the ranks of } y - \text{observations.}$

Two independent samples: rank sum test

The exact distributions of R_1 and R_2 (stochastic versions of r_1 and r_2) under the null hypothesis depend only on the sample sizes n and m. When $n \ge 10$ and $m \ge 10$, we can use the normal approximation with means

$$\mathbb{E}(R_1) = rac{n(n+m+1)}{2}$$
 and $\mathbb{E}(R_2) = rac{m(n+m+1)}{2}$

and variance

$$\mathsf{Var}(R_1) = \mathsf{Var}(R_2) = \frac{mn(n+m+1)}{12}.$$

Then, the test statistic (similarly for R_2) under H_0

$$rac{R_1-\mathbb{E}(R_1)}{\sqrt{\mathsf{Var}(R_1)}}pprox \mathsf{N}(0,1).$$

イロン スピン スピン スピン 一日

Two independent samples: large sample test for comparing population proportions

We have a sample $(x_1, ..., x_n)$ from $Bin(1, p_1)$ and a sample $(y_1, ..., y_m)$ from $Bin(1, p_2)$, and want to test

 $H_0: p_1 = p_2.$

For large samples, we can use the test statistic

$$Z=rac{\hat{
ho}_1-\hat{
ho}_2}{\sqrt{rac{\hat{
ho}_1(1-\hat{
ho}_1)}{n-1}+rac{\hat{
ho}_2(1-\hat{
ho}_2)}{m-1}}},$$

which is approximatively N(0, 1)-distributed (under H_0) and

$$s_{\hat{p}_1}^2 = rac{\hat{p}_1(1-\hat{p}_1)}{n-1}$$
 and $s_{\hat{p}_2}^2 = rac{\hat{p}_2(1-\hat{p}_2)}{m-1}$.

We can also use the corresponding confidence interval for $p_1 - p_2$.

Two independent samples: Fisher's exact test for comparing population proportions

When the sample sizes are small, the normal approximation should not be used. Instead, we summarize the data as a 2×2 table of counts

	Sample 1	Sample 2	Total
Number of 1's	<i>c</i> ₁₁	<i>c</i> ₁₂	$c_{11} + c_{12}$
Number of 0's	<i>c</i> ₀₁	<i>c</i> ₀₂	$c_{01} + c_{02}$
Sample sizes	п	m	n+m

where

$$c_{11} = x_1 + \dots + x_n, \ c_{01} = n - c_{11}$$

and

$$c_{12} = y_1 + \ldots + y_m, \ c_{02} = m - c_{12}.$$

We can think that among the n + m balls in a box, $c_{11} + c_{12}$ are black and $c_{01} + c_{02}$ are white, and that the observed count c_{11} is the number of black balls in a sample of size n. The proportion of black balls is

 $p=\frac{c_{11}+c_{12}}{n+m},$

and under H_0 , $C_{11} \sim Hg(n + m, n, p)$ and can be used as the test statistics.

Examples of paired data

- two measurements from the same person
- measurements from a matched pair, e.g. twins
- two types of tires tested on the same car

Paired samples: Paired z- or t-test for the difference between two means

A paired sample $(x_1, y_1), ..., (x_n, y_n)$, where x_i 's are from a population with mean μ_1 and variance σ_1^2 and y_i 's from a population with mean μ_2 and variance σ_2^2 .

We reduce these two samples to a sample of differences $d_i = x_i - y_i$, i = 1, ..., n, and use the large sample z-test or the one-sample t-test to test the hypothesis $H_0 : \mu_1 = \mu_2$ which becomes $H_0 : \mu_1 - \mu_2 = \mu_D = 0$.

Note that for the t-test, the difference D has to be normally distributed.

If the sample size is small and the difference is not normally distributed, we can use a non-parametric test, for example, a sign test or a signed rank test.

The signed rank test requires that the population distribution D = X - Y is symmetric around the median. We can test

 $H_0: m = 0$ against $H_1: m \neq 0$

by using the test statistic computed by using the ranks of the absolute values of the differences

 $r_i = rank(|d_i|), \quad i = 1, ..., n.$

Paired samples: Signed rank test

Example: To study to what extend blood platelets aggregate (lower values better) before and after smoking.

Before y _i	After x _i	$d_i = x_i - y_i$	$ d_i $	Rank	Signed rank
25	27	2	2	2	2
25	29	4	4	3.5	3.5
27	37	10	10	6	6
28	43	15	15	8.5	8.5
30	46	16	16	10	10
44	56	12	12	7	7
52	61	9	9	5	5
53	57	4	4	3.5	3.5
53	80	27	27	11	11
60	59	-1	1	1	-1
67	82	15	15	8.5	8.5

The test statistic is either the sum of positive ranks or the sum of negative ranks, i.e.

$$w = \sum_{i=1}^n r_i \cdot \mathbb{I}(d_i > 0)$$
 or $w = \sum_{i=1}^n r_i \cdot \mathbb{I}(d_i < 0)$

The distribution under H_0 is the same in either case and when $n \ge 20$, the normal approximation for the distribution of W can be used with the mean and variance

$$\mu = \frac{n(n+1)}{4}, \quad \sigma^2 = \frac{n(n+1)(2n+1)}{24}.$$

The test statistic is

$$rac{W-\mu}{\sigma}pprox {\sf N}(0,1).$$

Paired samples: Comparing population proportions

We have two dependent Bernoulli variables $X \sim Bin(1, p_1)$ and $Y \sim Bin(1, p_2)$. The vector (X, Y) has four different values (0, 0), (0, 1), (1, 0), (1, 1) with probabilities $\pi_{00}, \pi_{01}, \pi_{10}, \pi_{11}$.

$X \setminus Y$	0	1	
0	π_{00}	π_{01}	$\pi_{00} + \pi_{01}$
1	π_{10}	π_{11}	$\pi_{10} + \pi_{11}$
	$\pi_{00} + \pi_{10}$	$\pi_{01} + \pi_{11}$	1

The observed counts from n independent pairs of observations are denoted by $c_{00}, c_{01}, c_{10}, c_{11}$.

The difference $p_1 - p_2 = \pi_1 - \pi_2$ can be estimated by

$$\hat{p}_1 - \hat{p}_2 = \hat{\pi}_{10} - \hat{\pi}_{01} = \frac{c_{10}}{n} - \frac{c_{01}}{n}$$

The variance of $\hat{p}_1 - \hat{p}_2$ can be estimated by

$$s_{\hat{p}_1-\hat{p}_2}^2 = rac{\hat{\pi}_{10}+\hat{\pi}_{01}-(\hat{\pi}_{10}-\hat{\pi}_{01})^2}{n-1}.$$

Using normal approximation, we obtain the following $100(1 - \alpha)\%$ confidence interval for the difference

$$I_{p_1-p_2} \approx \hat{p}_1 - \hat{p}_2 \pm z(\alpha/2)s_{\hat{p}_1-\hat{p}_2}.$$

Paired samples: Comparing population proportions by McNemar's test

The test

$$H_0: p_1 = p_2$$
 against $H_1: p_1 \neq p_2$

(or $H_0: \pi_{10} = \pi_{01}$ against $H_1: \pi_{10} \neq \pi_{01}$) has the rejection region

$$\mathcal{R} = \left\{ \frac{|\hat{\pi}_{10} - \hat{\pi}_{01}|}{\sqrt{\frac{\hat{\pi}_{10} + \hat{\pi}_{01} - (\hat{\pi}_{10} - \hat{\pi}_{01})^2}{n-1}}} > z(\alpha/2) \right\}$$

For large samples,

$$\frac{(n-1)(\hat{\pi}_{10}-\hat{\pi}_{01})^2}{\hat{\pi}_{10}+\hat{\pi}_{01}-(\hat{\pi}_{10}-\hat{\pi}_{01})^2}\approx\frac{n(\hat{\pi}_{10}-\hat{\pi}_{01})^2}{\hat{\pi}_{10}+\hat{\pi}_{01}-(\hat{\pi}_{10}-\hat{\pi}_{01})^2}\approx\frac{(c_{10}-c_{01})^2}{c_{10}+c_{01}}$$

which is the McNerman statistic which is approximatively χ_1^2 -distributed when H_0 is true.