Statistical inference (MVE155/MSG200)

Comparing two samples

Set-up

We have two samples

- $\left(x_{1}, \ldots, x_{n}\right)$ from a population with mean μ_{1} and variance σ_{1}^{2}
- $\left(y_{1}, \ldots, y_{m}\right)$ from a population with mean μ_{2} and variance σ_{2}^{2}, and want to compare the two populations. We have two cases
- Two independent samples
- Paired samples

We compare

- population means/medians
- population proportions
- entire population distributions

Two independent samples: Large sample test for the

 difference between two meansIf the sample sizes n and m are large, we can test the null hypothesis $H_{0}: \mu_{1}=\mu_{2}$ by using the test statistic

$$
Z=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\bar{X}}^{2}+S_{\bar{Y}}^{2}}}=\frac{\bar{X}-\bar{Y}}{\sqrt{S_{\bar{X}}^{2}+S_{\bar{Y}}^{2}}} \approx N(0,1)
$$

(under H_{0}) since

$$
\operatorname{Var}(\bar{X}-\bar{Y})=\operatorname{Var}(\bar{X})+\operatorname{Var}(\bar{Y})=\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}
$$

which can be estimated by the sum of the corresponding sample variances $S_{\bar{X}}^{2}$ and $S_{\bar{Y}}^{2}$. Equivalently, when $H_{1}: \mu_{1} \neq \mu_{2}$, one can compute the approximate $100(1-\alpha) \%$ confidence interval

$$
I_{\mu_{1}-\mu_{2}} \approx \bar{x}-\bar{y} \pm z(\alpha / 2) \sqrt{s_{\bar{x}}^{2}+s_{\bar{y}}^{2}}
$$

and reject the null hypothesis if the interval does not cover zero.

Two independent samples: Two-sample t-test for the difference between two means

If the sample sizes n and m are small, we cannot assume that

$$
Z=\frac{\bar{X}-\bar{Y}}{\sqrt{S_{\bar{X}}^{2}+S_{\bar{Y}}^{2}}} \approx N(0,1) .
$$

We assume that the two population distributions are normal, i.e. $X \sim N\left(\mu_{1}, \sigma_{1}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}\right)$, and that $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$.

The common variance is estimated by the pooled sample variance

$$
s_{p}^{2}=\frac{(n-1) s_{1}^{2}+(m-1) s_{2}^{2}}{n+m-2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{m}\left(y_{i}-\bar{y}\right)^{2}}{n+m-2}
$$

which (its stochastic version) is an unbiased estimator for σ^{2}.

Two independent samples: Two-sample t-test for the difference between two means

Under the normality assumption, the null hypothesis $H_{0}: \mu_{1}=\mu_{2}$ can be tested by using the test statistic

$$
T=\frac{\bar{X}-\bar{Y}}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim t_{n+m-2}
$$

since

$$
\operatorname{Var}(\bar{X}-\bar{Y})=\sigma^{2}\left(\frac{1}{n}+\frac{1}{m}\right)=\sigma^{2}\left(\frac{n+m}{n m}\right)
$$

Equivalently, one can compute a $100(1-\alpha) \%$ confidence interval

$$
I_{\mu_{1}-\mu_{2}}=\bar{x}-\bar{y} \pm t_{n+m-2}(\alpha / 2) \cdot s_{p} \sqrt{\frac{n+m}{n m}}
$$

and reject the null hypothesis if the interval does not cover zero.

Two independent samples: rank sum test for the difference of the population distributions

If the sample sizes are small and the samples cannot be assumed to come from normal distributions, non-parametric tests, such as the rank sum test, should be used.

We have two independent samples, $\left(x_{1}, \ldots, x_{n}\right)$ from some population distribution F_{1} and $\left(y_{1}, \ldots, y_{m}\right)$ from some population distribution F_{2} and we test

$$
H_{0}: F_{1}=F_{2} \quad \text { against } \quad H_{1}: F_{1} \neq F_{2} .
$$

The rank sum test is performed as follows:

1. Pool the samples and replace the data values by their ranks $1,2, \ldots, n+m$, starting from the smallest value.
2. Compute two test statistics

- $r_{1}=$ sum of the ranks of x - observations
- $r_{2}=$ sum of the ranks of y - observations.

Two independent samples: rank sum test

The exact distributions of R_{1} and R_{2} (stochastic versions of r_{1} and r_{2}) under the null hypothesis depend only on the sample sizes n and m. When $n \geq 10$ and $m \geq 10$, we can use the normal approximation with means

$$
\mathbb{E}\left(R_{1}\right)=\frac{n(n+m+1)}{2} \quad \text { and } \quad \mathbb{E}\left(R_{2}\right)=\frac{m(n+m+1)}{2}
$$

and variance

$$
\operatorname{Var}\left(R_{1}\right)=\operatorname{Var}\left(R_{2}\right)=\frac{m n(n+m+1)}{12}
$$

Then, the test statistic (similarly for R_{2}) under H_{0}

$$
\frac{R_{1}-\mathbb{E}\left(R_{1}\right)}{\sqrt{\operatorname{Var}\left(R_{1}\right)}} \approx N(0,1)
$$

Two independent samples: large sample test for comparing

 population proportionsWe have a sample $\left(x_{1}, \ldots, x_{n}\right)$ from $\operatorname{Bin}\left(1, p_{1}\right)$ and a sample $\left(y_{1}, \ldots, y_{m}\right)$ from $\operatorname{Bin}\left(1, p_{2}\right)$, and want to test

$$
H_{0}: p_{1}=p_{2}
$$

For large samples, we can use the test statistic

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n-1}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{m-1}}},
$$

which is approximatively $N(0,1)$-distributed (under H_{0}) and

$$
s_{\hat{p}_{1}}^{2}=\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n-1} \quad \text { and } \quad s_{\hat{p}_{2}}^{2}=\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{m-1} .
$$

We can also use the corresponding confidence interval for $p_{1}-p_{2}$.

Two independent samples: Fisher's exact test for comparing population proportions

When the sample sizes are small, the normal approximation should not be used. Instead, we summarize the data as a 2×2 table of counts

	Sample 1	Sample 2	Total
Number of 1's	c_{11}	c_{12}	$c_{11}+c_{12}$
Number of 0's	c_{01}	c_{02}	$c_{01}+c_{02}$
Sample sizes	n	m	$n+m$

where

$$
c_{11}=x_{1}+\ldots+x_{n}, c_{01}=n-c_{11}
$$

and

$$
c_{12}=y_{1}+\ldots+y_{m}, c_{02}=m-c_{12} .
$$

Two independent samples: Fisher's exact test for comparing population proportions

We can think that among the $n+m$ balls in a box, $c_{11}+c_{12}$ are black and $c_{01}+c_{02}$ are white, and that the observed count c_{11} is the number of black balls in a sample of size n. The proportion of black balls is

$$
p=\frac{c_{11}+c_{12}}{n+m}
$$

and under $H_{0}, C_{11} \sim H g(n+m, n, p)$ and can be used as the test statistics.

Examples of paired data

- two measurements from the same person
- measurements from a matched pair, e.g. twins
- two types of tires tested on the same car

Paired samples: Paired z - or t -test for the difference

 between two meansA paired sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, where x_{i} 's are from a population with mean μ_{1} and variance σ_{1}^{2} and y_{i} 's from a population with mean μ_{2} and variance σ_{2}^{2}.

We reduce these two samples to a sample of differences $d_{i}=x_{i}-y_{i}, i=1, \ldots, n$, and use the large sample z-test or the one-sample t-test to test the hypothesis $H_{0}: \mu_{1}=\mu_{2}$ which becomes $H_{0}: \mu_{1}-\mu_{2}=\mu_{D}=0$.

Note that for the t-test, the difference D has to be normally distributed.

Paired samples: Signed rank test

If the sample size is small and the difference is not normally distributed, we can use a non-parametric test, for example, a sign test or a signed rank test.

The signed rank test requires that the population distribution $D=X-Y$ is symmetric around the median. We can test

$$
H_{0}: m=0 \quad \text { against } \quad H_{1}: m \neq 0
$$

by using the test statistic computed by using the ranks of the absolute values of the differences

$$
r_{i}=\operatorname{rank}\left(\left|d_{i}\right|\right), \quad i=1, \ldots, n
$$

Paired samples: Signed rank test

Example: To study to what extend blood platelets aggregate (lower values better) before and after smoking.

Before y_{i}	After x_{i}	$d_{i}=x_{i}-y_{i}$	$\left\|d_{i}\right\|$	Rank	Signed rank
25	27	2	2	2	2
25	29	4	4	3.5	3.5
27	37	10	10	6	6
28	43	15	15	8.5	8.5
30	46	16	16	10	10
44	56	12	12	7	7
52	61	9	9	5	5
53	57	4	4	3.5	3.5
53	80	27	27	11	11
60	59	-1	1	1	-1
67	82	15	15	8.5	8.5

Paired samples: Signed rank test

The test statistic is either the sum of positive ranks or the sum of negative ranks, i.e.

$$
w=\sum_{i=1}^{n} r_{i} \cdot \mathbb{I}\left(d_{i}>0\right) \quad \text { or } \quad w=\sum_{i=1}^{n} r_{i} \cdot \mathbb{I}\left(d_{i}<0\right)
$$

The distribution under H_{0} is the same in either case and when $n \geq 20$, the normal approximation for the distribution of W can be used with the mean and variance

$$
\mu=\frac{n(n+1)}{4}, \quad \sigma^{2}=\frac{n(n+1)(2 n+1)}{24} .
$$

The test statistic is

$$
\frac{W-\mu}{\sigma} \approx N(0,1)
$$

Paired samples: Comparing population proportions

We have two dependent Bernoulli variables $X \sim \operatorname{Bin}\left(1, p_{1}\right)$ and $Y \sim \operatorname{Bin}\left(1, p_{2}\right)$. The vector (X, Y) has four different values $(0,0),(0,1),(1,0),(1,1)$ with probabilities $\pi_{00}, \pi_{01}, \pi_{10}, \pi_{11}$.

$X \backslash Y$	0	1	
0	π_{00}	π_{01}	$\pi_{00}+\pi_{01}$
1	π_{10}	π_{11}	$\pi_{10}+\pi_{11}$
	$\pi_{00}+\pi_{10}$	$\pi_{01}+\pi_{11}$	1

The observed counts from n independent pairs of observations are denoted by $c_{00}, c_{01}, c_{10}, c_{11}$.

The difference $p_{1}-p_{2}=\pi_{1}-\pi_{2}$ can be estimated by

$$
\hat{p}_{1}-\hat{p}_{2}=\hat{\pi}_{10}-\hat{\pi}_{01}=\frac{c_{10}}{n}-\frac{c_{01}}{n} .
$$

Paired samples: Comparing population proportions

The variance of $\hat{p}_{1}-\hat{p}_{2}$ can be estimated by

$$
s_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\frac{\hat{\pi}_{10}+\hat{\pi}_{01}-\left(\hat{\pi}_{10}-\hat{\pi}_{01}\right)^{2}}{n-1}
$$

Using normal approximation, we obtain the following $100(1-\alpha) \%$ confidence interval for the difference

$$
I_{p_{1}-p_{2}} \approx \hat{p}_{1}-\hat{p}_{2} \pm z(\alpha / 2) s_{\hat{p}_{1}-\hat{p}_{2}} .
$$

Paired samples: Comparing population proportions by McNemar's test

The test

$$
H_{0}: p_{1}=p_{2} \quad \text { against } \quad H_{1}: p_{1} \neq p_{2}
$$

(or $H_{0}: \pi_{10}=\pi_{01}$ against $H_{1}: \pi_{10} \neq \pi_{01}$) has the rejection region

$$
\mathcal{R}=\left\{\frac{\left|\hat{\pi}_{10}-\hat{\pi}_{01}\right|}{\sqrt{\frac{\hat{\pi}_{10}+\hat{\pi}_{01}-\left(\hat{\pi}_{10}-\hat{\pi}_{01}\right)^{2}}{n-1}}}>z(\alpha / 2)\right\}
$$

For large samples,

$$
\frac{(n-1)\left(\hat{\pi}_{10}-\hat{\pi}_{01}\right)^{2}}{\hat{\pi}_{10}+\hat{\pi}_{01}-\left(\hat{\pi}_{10}-\hat{\pi}_{01}\right)^{2}} \approx \frac{n\left(\hat{\pi}_{10}-\hat{\pi}_{01}\right)^{2}}{\hat{\pi}_{10}+\hat{\pi}_{01}-\left(\hat{\pi}_{10}-\hat{\pi}_{01}\right)^{2}} \approx \frac{\left(c_{10}-c_{01}\right)^{2}}{c_{10}+c_{01}}
$$

which is the McNerman statistic which is approximatively χ_{1}^{2}-distributed when H_{0} is true.

