Bayesian inference
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Frequentistic approach: Data x are generated from some
population distribution f(x|#), where 6 is an unknown (constant)
parameter.

Bayesian approach:

» Parameters of interest are treated as random variables and
generated from some prior distribution g(0).

» Given 0, data has the distribution or likelihood f(x|0).

» Parameters are estimated by finding the posterior distribution
h(0|x).
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We have two events A and B, where P(A) # 0 and P(B) # 0.
The Bayes theorem says that
(AnB) P(BJAP(A)

P
PAB) = "5@) = pB)

Also, for random variables X and Y with density (or probability
mass) functions fx and fy, respectively, and fx(x) # 0, fy(y) # 0,

fv|x(}”X)fX(X)‘

fX|Y(X|y): fY(y)
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Given a prior distribution g(#) and likelihood f(x|#), the posterior
distribution h(f|x) can be computed by using the Bayes theorem:

f(x[0)g(9)

h(0|x) = W,

where

¢(x):/f(x|e) (6) df or ¢(x) = > P(X = x|0)g(6)

depending on whether X is continuous or discrete. This gives that

posterior o likelihood X prior.

4/18



» We choose the prior.

» If we do not have any prior information on the parameter(s),
we can choose uninformative, uniform priors.

» If we have some prior information, we can take it into account
when choosing the prior.

» The prior should be chosen before the data are collected.
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A sample xi, ..., x, from a normal distribution with known variance

o?.

We choose N(po,00) as the prior distribution g(6) for the mean 6
and the likelihood

1 \>2 1 < )
f(x1y ...y Xn|0) = (2%02) exp ~552 (xi —0) | .
i=1

The posterior distribution h(6|x) o< f(x, ..., xn|0)g(0) is also
normal.
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Let the data be generated from a parametric model having the
likelihood f(x|#) and let us have a parametric family of prior
distributions G.

Then G is called a family of conjugated priors for the likelihood
function f(x|0) if for any prior g(6) € G, the posterior

h(0]x) o f(x|0)g(0)

also belongs to G.

Normal distributions are conjugated priors for normal distributions
when estimating the mean.
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Model for the data | 6 | Prior Posterior
N(p, o) p | N(poso0) | N(vnpo + (1 = )X, 00/7n)
Bin(n, p) p | Beta(a, b) Beta(a+ x, b+ n— x)
Pois(p) p | Gam(ag, Ao) | Gam(ag + nx, Ao + n)
Gam(a, \) A | Gam(ag, Xo) | Gam(ag + an, Ao + nX)
0.2
Above, v, = n?

Note that as n increases the posterior becomes less effected by the
prior.
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Data: X ~ Bin(n,p), where X = Xj + ... + X, and each
Xi ~ Bin(1, p).

Task: Estimate p using a Beta(a, b) prior, which has the density
function

M(a+ b)

g(p) = W/f”*l(l -p)t, 0<p<l,

where a > 0 and 3 > 0,
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A point estimate a for the paramter 6 is chosen by minimizing the
posterior risk (given the data)

R(alx) = E(/(©,a)|x)

which is computed by using the posterior distribution, i.e.

R(alx) = / 10, a)h(6]) o, (oer(O,a)h(9|x)>
0

where / is a loss function, for example

» zero-loss function: /(f,a) = 1y, (maximum a posteriori
(map), the value that maximizes the posterior, posterior
mode)

» squared loss: /(6,a) = (0 — a)? (posterior mean)
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A parameter is a random variable © having the (posterior)
distribution h(#|x) and we can compute 100(1 — )% credibility
intervals for ©. They are of the form

Jo = (b1(x), ba2(x))

such that
P(bi(x) < © < ba(x)|x) =1 — a.
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Consider the case of two simple hypotheses
Ho:0 =09 versus Hi:60 =0.

Likelihood functions connected to these hypotheses are f(x|6p)
and f(x|01) and priors P(Hy) = mp and P(H;) = m1 = 1 — mo.
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The rejection region R and whether to reject the null hypothesis is
decided based on the cost function:

Decision Ho true | Hj true
x ¢ R | Do not reject Hy | 0 costy
x € R | Reject Hy costg 0

Here,

P costg is the cost for the type | error

» cost; the cost for the type Il error
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The rejection region is chosen by minimizing the average cost
(weighted mean of costg and cost;)

costomoP (X € R|Hp) + costimP(X ¢ R|H1).
This leads to rejecting Hy if

f(x|6o)  costimi
f(x]01) ~ costomp’

where 7o /71 is called the prior odds and cost; /costg the cost ratio.
Equivalently, Hy is rejected if

h(6o|x)  costy
h(01|x) ~ costy
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The person N, who is charged for rape, is a male of age 37 living
in the area not very far from the crime scene. The jury has to
decide whether the person is innocent (Hp: N is innocent) or guilty
(Hi: N is guilty).
There are three conditionally independent pieces of evidence:

> E1: a DNA match

» E2: defendant N is not recognised by the victim

» E3: an alibi supported by the N's girlfriend.
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The reliability of E1-E3 was quantified as
» P(E1|Hp) = 1/200,000,000 and P(E1|H;) =1
— very strong evidence for Hy,
P(E1|Hoy)/P(E1|H1) = 1/200,000, 000
» P(E2|Hp) =0.9 and P(E2|H;) =0.1
— strong evidence for Hy, P(E2|Hy)/P(E2|H1) =9
» P(E3|Hp) = 0.5 and P(E3|H;) = 0.25
— some evidence for Hy, P(E3|Hp)/P(E3|H1) =2

The non-informative prior probability
m1 = P(H1) = 1/200, 000

was used (thinking about the number of males who theoretically
could have committed the crime without any evidence taken into
account).
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Posterior odds become

P(Ho|Ex, Bz, E3) _ P(E1|Ho)P(Ex| Ho)P(Es|Ho)mo _ o o
P(Hi|Ey1, B2, E5)  P(EL|Hh)P(Eo|Hh)P(Es|Hy)m

The person N would be found guilty if the cost values assigned by
the jury were such that

t t f ished cri
cost; _ _ cost for unpunished crime .o

costy  cost for punishing an innocent
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