Statistical inference (MVE155/MSG200)

Bayesian inference

Bayesian approach

Frequentistic approach: Data x are generated from some population distribution $f(x \mid \theta)$, where θ is an unknown (constant) parameter.

Bayesian approach:

- Parameters of interest are treated as random variables and generated from some prior distribution $g(\theta)$.
- Given θ, data has the distribution or likelihood $f(x \mid \theta)$.
- Parameters are estimated by finding the posterior distribution $h(\theta \mid x)$.

Bayes theorem

We have two events A and B, where $P(A) \neq 0$ and $P(B) \neq 0$. The Bayes theorem says that

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{\mathrm{P}(B \mid A) \mathrm{P}(A)}{\mathrm{P}(B)}
$$

Also, for random variables X and Y with density (or probability mass) functions f_{X} and f_{Y}, respectively, and $f_{X}(x) \neq 0, f_{Y}(y) \neq 0$,

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}
$$

Posterior distribution

Given a prior distribution $g(\theta)$ and likelihood $f(x \mid \theta)$, the posterior distribution $h(\theta \mid x)$ can be computed by using the Bayes theorem:

$$
h(\theta \mid x)=\frac{f(x \mid \theta) g(\theta)}{\phi(x)}
$$

where

$$
\phi(x)=\int f(x \mid \theta) g(\theta) d \theta \text { or } \phi(x)=\sum \mathrm{P}(X=x \mid \theta) g(\theta)
$$

depending on whether X is continuous or discrete. This gives that posterior \propto likelihood \times prior.

Note on the prior

- We choose the prior.
- If we do not have any prior information on the parameter(s), we can choose uninformative, uniform priors.
- If we have some prior information, we can take it into account when choosing the prior.
- The prior should be chosen before the data are collected.

Estimating the mean of normal distribution

A sample x_{1}, \ldots, x_{n} from a normal distribution with known variance σ^{2}.

We choose $N\left(\mu_{0}, \sigma_{0}\right)$ as the prior distribution $g(\theta)$ for the mean θ and the likelihood

$$
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{n}{2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right)
$$

The posterior distribution $h(\theta \mid x) \propto f\left(x_{1}, \ldots, x_{n} \mid \theta\right) g(\theta)$ is also normal.

Conjugate priors

Let the data be generated from a parametric model having the likelihood $f(x \mid \theta)$ and let us have a parametric family of prior distributions \mathcal{G}.

Then \mathcal{G} is called a family of conjugated priors for the likelihood function $f(x \mid \theta)$ if for any prior $g(\theta) \in \mathcal{G}$, the posterior

$$
h(\theta \mid x) \propto f(x \mid \theta) g(\theta)
$$

also belongs to \mathcal{G}.
Normal distributions are conjugated priors for normal distributions when estimating the mean.

Conjugate priors

Model for the data	θ	Prior	Posterior
$N(\mu, \sigma)$	μ	$N\left(\mu_{0}, \sigma_{0}\right)$	$N\left(\gamma_{n} \mu_{0}+\left(1-\gamma_{N}\right) \bar{x}, \sigma_{0} \sqrt{\gamma_{n}}\right)$
$\operatorname{Bin}(n, p)$	p	$\operatorname{Beta}(a, b)$	$\operatorname{Beta}(a+x, b+n-x)$
$\operatorname{Pois}(\mu)$	μ	$\operatorname{Gam}\left(\alpha_{0}, \lambda_{0}\right)$	$\operatorname{Gam}\left(\alpha_{0}+n \bar{x}, \lambda_{0}+n\right)$
$\operatorname{Gam}(\alpha, \lambda)$	λ	$\operatorname{Gam}\left(\alpha_{0}, \lambda_{0}\right)$	$\operatorname{Gam}\left(\alpha_{0}+\alpha n, \lambda_{0}+n \bar{x}\right)$

Above, $\gamma_{n}=\frac{\sigma^{2}}{\sigma^{2}+n \sigma_{0}^{2}}$.
Note that as n increases the posterior becomes less effected by the prior.

Binomial-Beta

Data: $X \sim \operatorname{Bin}(n, p)$, where $X=X_{1}+\ldots+X_{n}$ and each $X_{i} \sim \operatorname{Bin}(1, p)$.
Task: Estimate p using a $\operatorname{Beta}(a, b)$ prior, which has the density function

$$
g(p)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} p^{a-1}(1-p)^{b-1}, \quad 0<p<1
$$

where $a>0$ and $\beta>0$,

Beta distribution

Point estimate?

A point estimate a for the paramter θ is chosen by minimizing the posterior risk (given the data)

$$
R(a \mid x)=\mathbb{E}(I(\Theta, a) \mid x)
$$

which is computed by using the posterior distribution, i.e.

$$
R(a \mid x)=\int I(\theta, a) h(\theta \mid x) d \theta, \quad\left(\text { or } \sum_{\theta} I(\theta, a) h(\theta \mid x)\right)
$$

where I is a loss function, for example

- zero-loss function: $I(\theta, a)=\mathbf{1}_{\theta \neq a}$ (maximum a posteriori (map), the value that maximizes the posterior, posterior mode)
- squared loss: $I(\theta, a)=(\theta-a)^{2}$ (posterior mean)

Credibility intervals

A parameter is a random variable Θ having the (posterior) distribution $h(\theta \mid x)$ and we can compute $100(1-\alpha) \%$ credibility intervals for Θ. They are of the form

$$
J_{\theta}=\left(b_{1}(x), b_{2}(x)\right)
$$

such that

$$
\mathrm{P}\left(b_{1}(x)<\Theta<b_{2}(x) \mid x\right)=1-\alpha
$$

Bayesian hypothesis testing

Consider the case of two simple hypotheses

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta=\theta_{1} .
$$

Likelihood functions connected to these hypotheses are $f\left(x \mid \theta_{0}\right)$ and $f\left(x \mid \theta_{1}\right)$ and priors $\mathrm{P}\left(H_{0}\right)=\pi_{0}$ and $\mathrm{P}\left(H_{1}\right)=\pi_{1}=1-\pi_{0}$.

Bayesian hypothesis testing

The rejection region \mathcal{R} and whether to reject the null hypothesis is decided based on the cost function:

	Decision	H_{0} true	H_{1} true
$x \notin \mathcal{R}$	Do not reject H_{0}	0	cost_{1}
$x \in \mathcal{R}$	Reject H_{0}	cost $_{0}$	0

Here,

- cost_{0} is the cost for the type I error
- cost_{1} the cost for the type II error

Bayesian hypothesis testing

The rejection region is chosen by minimizing the average cost (weighted mean of cost_{0} and cost_{1})

$$
\operatorname{cost}_{0} \pi_{0} \mathrm{P}\left(X \in \mathcal{R} \mid H_{0}\right)+\operatorname{cost}_{1} \pi_{1} \mathrm{P}\left(X \notin \mathcal{R} \mid H_{1}\right)
$$

This leads to rejecting H_{0} if

$$
\frac{f\left(x \mid \theta_{0}\right)}{f\left(x \mid \theta_{1}\right)}<\frac{\operatorname{cost}_{1} \pi_{1}}{\operatorname{cost}_{0} \pi_{0}}
$$

where π_{0} / π_{1} is called the prior odds and $\operatorname{cost}_{1} / \operatorname{cost}_{0}$ the cost ratio. Equivalently, H_{0} is rejected if

$$
\frac{h\left(\theta_{0} \mid x\right)}{h\left(\theta_{1} \mid x\right)}<\frac{\operatorname{cost}_{1}}{\operatorname{cost}_{0}}
$$

Example (compendium)

The person N , who is charged for rape, is a male of age 37 living in the area not very far from the crime scene. The jury has to decide whether the person is innocent ($H_{0}: \mathrm{N}$ is innocent) or guilty ($H_{1}: \mathrm{N}$ is guilty).
There are three conditionally independent pieces of evidence:

- E1: a DNA match
- E2: defendant N is not recognised by the victim
- E3: an alibi supported by the N's girlfriend.

Example (compendium)

The reliability of E1-E3 was quantified as

- $\mathrm{P}\left(E 1 \mid H_{0}\right)=1 / 200,000,000$ and $\mathrm{P}\left(E 1 \mid H_{1}\right)=1$
\rightarrow very strong evidence for H_{1},
$\mathrm{P}\left(E 1 \mid H_{0}\right) / \mathrm{P}\left(E 1 \mid H_{1}\right)=1 / 200,000,000$
- $\mathrm{P}\left(E 2 \mid H_{0}\right)=0.9$ and $\mathrm{P}\left(E 2 \mid H_{1}\right)=0.1$
\rightarrow strong evidence for $H_{0}, \mathrm{P}\left(E 2 \mid H_{0}\right) / \mathrm{P}\left(E 2 \mid H_{1}\right)=9$
- $\mathrm{P}\left(E 3 \mid H_{0}\right)=0.5$ and $P\left(E 3 \mid H_{1}\right)=0.25$
\rightarrow some evidence for $H_{0}, \mathrm{P}\left(E 3 \mid H_{0}\right) / \mathrm{P}\left(E 3 \mid H_{1}\right)=2$
The non-informative prior probability

$$
\pi_{1}=\mathrm{P}\left(H_{1}\right)=1 / 200,000
$$

was used (thinking about the number of males who theoretically could have committed the crime without any evidence taken into account).

Example (compendium)

Posterior odds become

$$
\frac{\mathrm{P}\left(H_{0} \mid E_{1}, E_{2}, E_{3}\right)}{\mathrm{P}\left(H_{1} \mid E_{1}, E_{2}, E_{3}\right)}=\frac{\mathrm{P}\left(E_{1} \mid H_{0}\right) \mathrm{P}\left(E_{2} \mid H_{0}\right) \mathrm{P}\left(E_{3} \mid H_{0}\right) \pi_{0}}{\mathrm{P}\left(E_{1} \mid H_{1}\right) \mathrm{P}\left(E_{2} \mid H_{1}\right) \mathrm{P}\left(E_{3} \mid H_{1}\right) \pi_{1}}=0.018 .
$$

The person N would be found guilty if the cost values assigned by the jury were such that

$$
\frac{\operatorname{cost}_{1}}{\operatorname{cost}_{0}}=\frac{\operatorname{cost} \text { for unpunished crime }}{\operatorname{cost} \text { for punishing an innocent }}>0.018 .
$$

