
Statistical inference (MVE155/MSG200)

Bayesian inference
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Bayesian approach

Frequentistic approach: Data x are generated from some
population distribution f (x |θ), where θ is an unknown (constant)
parameter.

Bayesian approach:

▶ Parameters of interest are treated as random variables and
generated from some prior distribution g(θ).

▶ Given θ, data has the distribution or likelihood f (x |θ).
▶ Parameters are estimated by finding the posterior distribution

h(θ|x).
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Bayes theorem

We have two events A and B, where P(A) ̸= 0 and P(B) ̸= 0.
The Bayes theorem says that

P(A|B) = P(A ∩ B)

P(B)
=

P(B|A)P(A)
P(B)

.

Also, for random variables X and Y with density (or probability
mass) functions fX and fY , respectively, and fX (x) ̸= 0, fY (y) ̸= 0,

fX |Y (x |y) =
fY |X (y |x)fX (x)

fY (y)
.
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Posterior distribution

Given a prior distribution g(θ) and likelihood f (x |θ), the posterior
distribution h(θ|x) can be computed by using the Bayes theorem:

h(θ|x) = f (x |θ)g(θ)
ϕ(x)

,

where

ϕ(x) =

∫
f (x |θ)g(θ) dθ or ϕ(x) =

∑
P(X = x |θ)g(θ)

depending on whether X is continuous or discrete. This gives that

posterior ∝ likelihood× prior.
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Note on the prior

▶ We choose the prior.

▶ If we do not have any prior information on the parameter(s),
we can choose uninformative, uniform priors.

▶ If we have some prior information, we can take it into account
when choosing the prior.

▶ The prior should be chosen before the data are collected.
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Estimating the mean of normal distribution

A sample x1, ..., xn from a normal distribution with known variance
σ2.

We choose N(µ0, σ0) as the prior distribution g(θ) for the mean θ
and the likelihood

f (x1, ..., xn|θ) =
(

1

2πσ2

) n
2

exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2

)
.

The posterior distribution h(θ|x) ∝ f (x1, ..., xn|θ)g(θ) is also
normal.
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Conjugate priors

Let the data be generated from a parametric model having the
likelihood f (x |θ) and let us have a parametric family of prior
distributions G.

Then G is called a family of conjugated priors for the likelihood
function f (x |θ) if for any prior g(θ) ∈ G, the posterior

h(θ|x) ∝ f (x |θ)g(θ)

also belongs to G.

Normal distributions are conjugated priors for normal distributions
when estimating the mean.
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Conjugate priors

Model for the data θ Prior Posterior

N(µ, σ) µ N(µ0, σ0) N(γnµ0 + (1− γN)x̄ , σ0
√
γn)

Bin(n, p) p Beta(a, b) Beta(a+ x , b + n − x)
Pois(µ) µ Gam(α0, λ0) Gam(α0 + nx̄ , λ0 + n)
Gam(α, λ) λ Gam(α0, λ0) Gam(α0 + αn, λ0 + nx̄)

Above, γn = σ2

σ2+nσ2
0
.

Note that as n increases the posterior becomes less effected by the
prior.

8 / 18



Binomial-Beta

Data: X ∼ Bin(n, p), where X = X1 + ...+ Xn and each
Xi ∼ Bin(1, p).

Task: Estimate p using a Beta(a, b) prior, which has the density
function

g(p) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1, 0 < p < 1,

where a > 0 and β > 0,
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Beta distribution
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Point estimate?

A point estimate a for the paramter θ is chosen by minimizing the
posterior risk (given the data)

R(a|x) = E(l(Θ, a)|x)

which is computed by using the posterior distribution, i.e.

R(a|x) =
∫

l(θ, a)h(θ|x) dθ,

(
or
∑
θ

l(θ, a)h(θ|x)

)

where l is a loss function, for example

▶ zero-loss function: l(θ, a) = 1θ ̸=a (maximum a posteriori
(map), the value that maximizes the posterior, posterior
mode)

▶ squared loss: l(θ, a) = (θ − a)2 (posterior mean)
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Credibility intervals

A parameter is a random variable Θ having the (posterior)
distribution h(θ|x) and we can compute 100(1− α)% credibility
intervals for Θ. They are of the form

Jθ = (b1(x), b2(x))

such that
P(b1(x) < Θ < b2(x)|x) = 1− α.
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Bayesian hypothesis testing

Consider the case of two simple hypotheses

H0 : θ = θ0 versus H1 : θ = θ1.

Likelihood functions connected to these hypotheses are f (x |θ0)
and f (x |θ1) and priors P(H0) = π0 and P(H1) = π1 = 1− π0.
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Bayesian hypothesis testing

The rejection region R and whether to reject the null hypothesis is
decided based on the cost function:

Decision H0 true H1 true

x /∈ R Do not reject H0 0 cost1
x ∈ R Reject H0 cost0 0

Here,

▶ cost0 is the cost for the type I error

▶ cost1 the cost for the type II error
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Bayesian hypothesis testing

The rejection region is chosen by minimizing the average cost
(weighted mean of cost0 and cost1)

cost0π0P(X ∈ R|H0) + cost1π1P(X /∈ R|H1).

This leads to rejecting H0 if

f (x |θ0)
f (x |θ1)

<
cost1π1
cost0π0

,

where π0/π1 is called the prior odds and cost1/cost0 the cost ratio.
Equivalently, H0 is rejected if

h(θ0|x)
h(θ1|x)

<
cost1
cost0

.
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Example (compendium)

The person N, who is charged for rape, is a male of age 37 living
in the area not very far from the crime scene. The jury has to
decide whether the person is innocent (H0: N is innocent) or guilty
(H1: N is guilty).
There are three conditionally independent pieces of evidence:

▶ E1: a DNA match

▶ E2: defendant N is not recognised by the victim

▶ E3: an alibi supported by the N’s girlfriend.
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Example (compendium)

The reliability of E1-E3 was quantified as

▶ P(E1|H0) = 1/200, 000, 000 and P(E1|H1) = 1
→ very strong evidence for H1,
P(E1|H0)/P(E1|H1) = 1/200, 000, 000

▶ P(E2|H0) = 0.9 and P(E2|H1) = 0.1
→ strong evidence for H0, P(E2|H0)/P(E2|H1) = 9

▶ P(E3|H0) = 0.5 and P(E3|H1) = 0.25
→ some evidence for H0, P(E3|H0)/P(E3|H1) = 2

The non-informative prior probability

π1 = P(H1) = 1/200, 000

was used (thinking about the number of males who theoretically
could have committed the crime without any evidence taken into
account).
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Example (compendium)

Posterior odds become

P(H0|E1,E2,E3)

P(H1|E1,E2,E3)
=

P(E1|H0)P(E2|H0)P(E3|H0)π0
P(E1|H1)P(E2|H1)P(E3|H1)π1

= 0.018.

The person N would be found guilty if the cost values assigned by
the jury were such that

cost1
cost0

=
cost for unpunished crime

cost for punishing an innocent
> 0.018.
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