
Statistical inference (MVE155/MSG200)

Parameter estimation
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Parameter estimation

Given a parametric model (distribution) which depends on some
unknown parameters θ = (θ1, ..., θk), we would like to estimate the
parameters from the sample (x1, ..., xn).

The two main methods to estimate the parameters are

▶ method of moments (compares the distribution and sample
moments)

▶ maximum likelihood method (maximises the so-called
likelihood function with respect to the parameters).
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Method of moments

We have a model (distribution) with, say, two parameters θ1 and
θ2 and we assume that

E(X ) = f (θ1, θ2), E(X 2) = g(θ1, θ2).

For example, for the normal distribution N(µ, σ),

▶ E(X ) = µ

▶ E(X 2) = σ2 + µ2.
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Method of moments

The sample moments

X̄ =
1

n

n∑
i=1

Xi , X 2 =
1

n

n∑
i=1

X 2
i

are consistent estimators for E(X ) and E(X 2).

The method of moment estimates, θ̃1 and θ̃2, for the parameters
θ1 and θ2, respectively, can be found be setting

x̄ = f (θ̃1, θ̃2), x2 = g(θ̃1, θ̃2).
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Method of moments: normal distribution

For normal distribution N(µ, σ),

E(X ) = µ, E(X 2) = σ2 + µ2

Method of moment estimates µ̃ and σ̃2 are

µ̃ = x̄ , σ̃2 =
1

n

n∑
i=1

x2i − x̄2 =
1

n

n∑
i=1

(xi − x̄)2.
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Method of moments: geometric distribution

For X ∼ Geom(p),

P(X = x) = (1− p)x−1p, x = 1, 2, ...

and E(X ) = 1
p . We will find the method of moments estimate for

p by setting

x̄ =
1

p̃

which gives p̃ = 1
x̄ .
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Maximum likelihood method

We have a sample (x1, ..., xn) (realization of (X1, ...,Xn)) from a
population with the population density (or frequency) function
f (x |θ). The joint distribution of the random sample

L(θ) = f (x1, ..., xn|θ) = f (x1|θ) · · · f (xn|θ)

is called a likelihood function. Note that it is treated as a function
of the parameter vector θ.

For discrete distributions, the joint frequency or likelihood function
gives the probability of observing the given data as a function of θ.

The maximum likelihood (ML) estimate for θ is the one that
maximises the likelihood function L. It is denoted by θ̂.
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Maximum likelihood method: normal distribution

Let us have a sample x1, ...xn from the population distribution
N(µ, σ). The likelihood function becomes

L(µ, σ2) =
n∏

i=1

f (xi |µ, σ2) =

(
1√
2πσ2

)n n∏
i=1

exp(−1

2
· (xi − µ)2

σ2
).

Often, it is easier to differentiate the log likelihood function
l(θ) = lnL(θ) than L(θ). In our case,

l(µ, σ2) = −n

2
ln(nπσ2)− 1

2
· 1

σ2

n∑
i+1

(xi − µ)2.

Maximising with respect to µ and σ2 gives

µ̂ = x̄ , σ̂2 =
1

n

n∑
i=1

(xi − x̄)2.
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Sufficient statistics

Let us have a statistic (a function of the sample (x1, ..., xn))
t = g(x1, ..., xn) such that

L(θ) = f (x1, ..., xn|θ) = h(t, θ) · c(x1, ..., xn) ∝ h(t, θ),

where c(x1, ..., xn) does not depend on θ. Then, the ML estimate
θ̂ depends on the data only through t.
→ t is called a sufficient statistic for θ.
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Sufficient statistics: normal distribution

Let (x1, ..., xn) be a sample from N(µ, σ). Then,

L(µ, σ) = (2πσ2)−n/2exp(
1

2σ2

n∑
i=1

(xi − µ)2)

= (2πσ2)−n/2exp(
1

2σ2
(

n∑
i=1

x2i − 2µ
n∑

i=1

xi + nµ2))

= (2πσ2)−n/2exp(
1

2σ2
(t2 − 2µt1 + nµ2)),

where

t1 =
n∑

i=1

xi , t2 =
n∑

i=1

x2i .

Statistics t1 and t2 are sufficient statistics for µ and σ2. Therefore,
if we have two samples with the same t1 and t2, they result in the
same ML estimates for µ and σ2.
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Sufficient statistics: geometric distribution

For geometric distribution Geom(p), the likelihood function
becomes

L(p) = P(X1 = x1, ...,Xn = xn) =
n∏

i=1

P(Xi = xi )

= pn
n∏

i=1

(1− p)xi−1

= pn(1− p)

n∑
i=1

xi−n
= pn(1− p)t−n,

where

t =
n∑

i=1

xi

is a sufficient statistic for p.
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Large sample properties of ML estimators

Let us have a sample x1, ..., xn from the population distribution f
with a single parameter θ and the log likelihood function

l(θ) = ln(f (x1|θ)) + ...+ ln(f (xn|θ)).

It can be shown that the ML estimator is approximatively normally
distributed when the sample size n is large, i.e.

θ̂ ≈ N(θ,
σθ√
n
),

where σ2
θ is the inverse of the so-called Fisher information

(variance of the first derivative of the log likelihood function l(θ),
i.e. the expectation of the derivative squared).
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Large sample properties of ML estimators: Cramér-Rao
inequality

ML estimators are asymptotically efficient estimators in the sense
of the Cramér-Rao inequality: If θ∗ is an unbiased estimator of θ,
then

Var(θ∗) ≥
σ2
θ

n
,

i.e. the variance is at least the ”large sample” variance of the ML
estimator.
→ ML estimator has the smallest variance among all the unbiased
estimators.

Also, estimators based on sufficient statistics are more efficient
(have smaller variance) than other estimators.
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Method of moments and ML estimators for Gam(α, λ)

Method of moments:

α̃ =
x̄2

x2 − x̄2
and λ =

x̄

x2 − x̄2

Maximum likelihood:

α̂ = λ̂ x̄ and n ln

(
α̂

x̄

)
= n · Γ

′(α̂)

Γ(α̂)
− ln

(
n∏

i=1

(xi )

)

(needs to be computed numerically).
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