
Statistical inference (MVE155/MSG200)

Multiple regression
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Simple linear regression

Describes linear relationship between a (random) response variable
Y and a (deterministic) predictor x , i.e.

Y = β0 + β1x + σZ ,

where Z ∼ N(0, 1).

Note that the noise σ > 0 is constant (homoscedastic) and does
not depend on the value of x . If σ varies with x , the situation is
called heteroscedastic.
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Simple linear regression: Data

Data consist of n pairs of independent observations

(x1, y1), ..., (xn, yn),

where
yi = β0 + β1xi + ei ,

where Ei ’s (stochastic variants or ei ’s) are iid and
N(0, σ)-distributed.
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Simple linear regression: Example

Can we describe the maximum
absorbance rate (y) (in
nanomoles) as a linear function
of the Hammett constant (x),
i.e. y = β0 + β1x , for a particular
compound?
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Hammett (x) 0.00 0.75 0.06 -0.26 0.18 0.42 -0.19 0.52 1.01 0.37 0.53
Max abs rate (y) 298 346 303 314 302 332 302 343 367 325 331
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Parameter estimation: least squares

β0 and β1 are estimated by minimizing the sum of squares of the
residuals yi − ŷi = yi − β0 − β1xi , i.e.

min
β0,β1

n∑
i=1

(yi − β0 − β1xi )
2

with respect to β0 and β1 (least squares estimates) or by using the
maximum likelihood method.

Both methods above lead to the same estimators.
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Parameter estimation: maximum likelihood

The parameters β0, β1, and σ2 can be estimated by maximizing
the likelihood function

L(β0, β1, σ
2) =

(
1

2πσ2

) n
2

n∏
i=1

exp

(
−(yi − (β0 + β1xi ))

2

2σ2

)

= (2π)−
n
2 (σ2)−

n
2 exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi )
2

)

or the log likelihood

−n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(yi − β0 − β1xi )
2.
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Parameter estimation

The ML estimates for the parameters β0, β1, and σ2 are

b0 = ȳ − b1x̄ , b1 =
xy − x̄ ȳ

x2 − x̄2
, σ̂2 =

ssE
n

=
1

n

n∑
i=1

ê2,

where xy = 1
n

∑
i
xiyi , x2 =

1
n

∑
i
x2i , and êi = yi − b0 − b1xi ,

i = 1, ..., n, are the residuals.

The ML estimator σ̂2 = SSE/n for σ2 is biased and an unbiased
estimator is given by

S2 =
SSE
n − 2

.
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Example (continues)

Data: n = 11, x̄ = 0.3082, ȳ = 323.9, xy = 107.0, x2 = 0.2352
giving

b1 = 51.2, b0 = ȳ − b1x̄ = 308.1, σ̂ = 10.2.

and

y = 308.1 + 51.2x .
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ML estimators

B0 and B1 (stochastic versions of b0 and b1) are unbiased
estimators for β0 and β1, respectively. Also,

B0 ∼ N

β0,

√
σ2
∑

x2i
n(n − 1)s2x

 , B1 ∼ N

(
β1,

√
σ2

(n − 1)s2x

)

Therefore,

B0 − β0
SB0

∼ tn−2 and
B1 − β1
SB1

∼ tn−2

(where S2
B0

= S2
∑

x2i /n(n − 1)s2x and S2
B1

= S2/(n − 1)s2x ).

Furthermore, there is a weak correlation between the estimators,

Cov(B0,B1) = − σ2x̄

(n − 1)s2x
.
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Confidence intervals

100(1− α)% confidence intervals for β0 and β1 become

Iβ0 = b0 ± tn−2(α/2) · sb0 and Iβ1 = b1 ± tn−2(α/2) · sb1 .

and the null hypotheses H0 : β1 = β∗ and H0 : β0 = β∗ can be
tested by using the test statistics

T =
B1 − β∗

SB1

and T =
B0 − β∗

SB0

,

respectively, which are both tn−2-distributed under H0. Typically,
one tests

▶ H0 : β1 = 0, no linear relationship between the response y and
predictor x .

▶ H0 : β0 = 0, the intercept is zero.

10 / 26



Prediction intervals

Given the parameter estimates b0 and b1, we can predict the value
of a new x-value, xp, (within the interval
(min{x1, ..., xn},max{x1, ..., xn})) using

yp = b0 + b1xp + σ̂zp,

where Zp ∼ N(0, 1) is independent of the sample
(x1, y1), ..., (xn, yn).

The expected value of Yp is

µp = β0 + β1xp

and its estimator µ̂p = B0 + B1xp.
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Prediction intervals

The variance of µ̂p is

Var(B0 + B1xp) = Var(B0) + x2pVar(B1) + 2xpCov(B0,B1)

=
σ2

n
+

σ2

n − 1

(
xp − x̄

sx

)2

and the variance of Yp

Var(Yp) = Var(µ̂p + σZp) = σ2

(
1 +

1

n
+

1

n − 1

(
xp − x̄

sx

)2
)

leading to the 100(1− α)% confidence interval for µp

Iµp = b0 + b1xp ± tn−2(α/2) s

√
1

n
+

1

n − 1

(
xp − x̄

sx

)2

and the 100(1− α)% prediction interval for yp

IYp = b0 + b1xp ± tn−2(α/2) s

√
1 +

1

n
+

1

n − 1

(
xp − x̄

sx

)2
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Prediction intervals
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Residuals

The random variables (residuals) Êi are normally distributed with
zero means and weakly correlated with each other.

Under the simple regression model, the scatter plot of the residuals
êi versus xi should be randomly scattered around the x-axis (left,
our previous example). The residual plot will reveal if the simple
linear model is not good (middle) or if the noise variance is not
constant (right).
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The normality can be checked by plotting a normal QQ-plot
between ordered residuals and standard normal quantiles.
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Connection between b1 and sample correlation coefficient

The sample correlation coefficient is

r =
sxy
sxsy

,

where

s2x =
1

n − 1

n∑
i=1

(xi − x̄)2, s2y =
1

n − 1

n∑
i=1

(yi − ȳ)2,

and

sxy =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ).

Note that
b1 =

rsy
sx

.
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Coefficient of determination

As in ANOVA, we can describe the observations by using sums of
squares. First, we can write

yi − ȳ = (ŷi − ȳ) + (yi − ŷi )

and then, by taking squares and summing over all observations, we
obtain ∑

(yi − ȳ)2 =
∑

(ŷi − ȳ)2 +
∑

(yi − ŷi )
2

or equivalently,
ssT = ssR + ssE ,

where

▶ ssT = (n − 1)s2y is the total sum of squares

▶ ssR = (n − 1)b21s
2
x = (n − 1)r2s2y is the regression sum of

squares

▶ ssE is the residual (error) sum of squares.
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Coefficient of determination

Therefore,

ssR
ssT

=
(n − 1)r2s2y
(n − 1)s2y

= r2 and
ssE
ssT

= 1− r2,

and r2 is called the coefficient of determination.

Also,
ssE = ssT (1− r2) = (n − 1)s2y (1− r2)

giving an unbiased estimator for σ2, namely

s2 =
ssE
n − 2

=
n − 1

n − 2
s2y (1− r2).
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Multiple linear regression

We can have any number (less than n) of predictors in a regression
model. If we have p − 1, p ≥ 2, predictors, our data consist of

y1 = β0 + β1x1,1 + ...+ βp−1x1,p−1 + e1

...

yn = β0 + β1xn,1 + ...+ βp−1xn,p−1 + en,

where e1, ..., en are independently generated from the distribution
N(0, σ).
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Multiple linear regression

We can write

y = (y1, ..., yn)
T , β = (β0, ..., βp−1)

T , e = (e1, ..., en)
T

and give the multiple regression model in the form

y = Xβ + e,

where

X =

 1 x1,1 ... x1,p−1

... ... ... ...
1 xn,1 ... xn,p−1


is called a design matrix.
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Multiple linear regression: estimates

The least squares estimates b = (b0, ..., b
T
p−1) are

b = (XTX)−1XTy,

which (the stochastic variants) are unbiased estimators for β. The
covariance matrix is given by

E((B− β)(B− β)T ) = σ2(XTX)−1.

Note that the diagonal elements of this matrix give the variances
of the parameter estimators.

The predicted responses become

ŷ = Xb = X(XTX)−1XTy = Py,

where P = X(XTX)−1XT .
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Multiple linear regression: residuals

The residuals are defined as in the single predictor case, i.e.

ê = y − ŷ = y − Py = (I− P)y.

The residuals have zero means and the covariance matrix
σ2(I− P).

An unbiased estimate for σ2 is given by

s2 =
ê21 + ...+ ê2n

n − p
=

ssE
n − p

.
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Multiple linear regression: Hypothesis testing

As in the single predictor case, the parameter estimators Bi ,
i = 0, ..., p − 1 are normally distributed and

Bj − βj
SBj

∼ tn−p.

Often, one tests the null hypotheses H0 : βi = 0, against
H1 : βi ̸= 0, i = 0, ..., p − 1.
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Multiple linear regression: Coefficient of multiple
determination

The coefficient of multiple determination can be computed as in
the simple regression model with one predictor, i.e.

R2 = 1− ssE
ssT

,

where ssT = (n − 1)s2y .

Since R2 is increasing when new predictors are added (whether
they have a relationship with the response variable of not), the
coefficient should be adjusted so that it does not overestimate the
contribution of the predictors. The adjusted coefficient is defined
as

R2
a = 1− n − 1

n − p
· ssE
ssT

= 1− s2

s2y
.

which approaches to R2 when p decreases.
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Remark

We can use multiple regression even in the case of a more complex
model in terms of one variable, for example

y = β0 + β1x + β2x
2 or y = β0 + β1x + β2x

2 + β3x
3.

In the first case, we can set

x1 = x and x2 = x2

and in the second case,

x1 = x , x2 = x2, and x3 = x3.
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Case study: catheter length

Heart catherization is sometimes performed on children with
congenital heart defects by using a Teflon tube (catheter). The
length of the catheter, y , is determined by the child’s height h
and/or the child’s weight w . In the study, n = 12.Three regression
models are compared:

▶ Model 1: y = β0 + β1h + σz

▶ Model 2: y = β0 + β1w + σz

▶ Model 3: y = β0 + β1h + β2w + σz
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Case study: catheter length

The null hypotheses that are tested below are H0 : βi = 0,
i = 0, 1, 2. In the table below, * means that the test result is
significant at 5% level.

Estimates Model 1 t-value Model 2 t-value Model 3 t-value
(height) (weight) (both)

b0(sb0) 12.1(4.3) 2.8∗ 25.6(2.0) 12.8∗ 21(8.8) 2.39∗

b1(sb1) 0.6(0.10) 6.0∗ 0.28(0.04) 7.0∗ 0.20(0.36) 0.56
b2(sb2) - - - - 0.19(0.17) 1.12

s 4.0 3.8 3.9
R2 0.78 0.80 0.81
R2
a 0.76 0.78 0.77

Which model is the best one?
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