Statistical inference (MVE155/MSG200)

Multiple regression

Simple linear regression

Describes linear relationship between a (random) response variable Y and a (deterministic) predictor x, i.e.

$$
Y=\beta_{0}+\beta_{1} x+\sigma Z
$$

where $Z \sim N(0,1)$.
Note that the noise $\sigma>0$ is constant (homoscedastic) and does not depend on the value of x. If σ varies with x, the situation is called heteroscedastic.

Simple linear regression: Data

Data consist of n pairs of independent observations

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}
$$

where E_{i} 's (stochastic variants or e_{i} 's) are iid and $N(0, \sigma)$-distributed.

Simple linear regression: Example

Can we describe the maximum absorbance rate (y) (in nanomoles) as a linear function of the Hammett constant (x), i.e. $y=\beta_{0}+\beta_{1} x$, for a particular compound?

Hammett (x)	0.00	0.75	0.06	-0.26	0.18	0.42	-0.19	0.52	1.01	0.37	0.53
Max abs rate (y)	298	346	303	314	302	332	302	343	367	325	331

Parameter estimation: least squares

β_{0} and β_{1} are estimated by minimizing the sum of squares of the residuals $y_{i}-\hat{y}_{i}=y_{i}-\beta_{0}-\beta_{1} x_{i}$, i.e.

$$
\min _{\beta_{0}, \beta_{1}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

with respect to β_{0} and β_{1} (least squares estimates) or by using the maximum likelihood method.

Both methods above lead to the same estimators.

Parameter estimation: maximum likelihood

The parameters β_{0}, β_{1}, and σ^{2} can be estimated by maximizing the likelihood function

$$
\begin{aligned}
L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right) & =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{n}{2}} \prod_{i=1}^{n} \exp \left(-\frac{\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}}{2 \sigma^{2}}\right) \\
& =(2 \pi)^{-\frac{n}{2}}\left(\sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}\right)
\end{aligned}
$$

or the log likelihood

$$
-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Parameter estimation

The ML estimates for the parameters β_{0}, β_{1}, and σ^{2} are

$$
b_{0}=\bar{y}-b_{1} \bar{x}, \quad b_{1}=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}}, \quad \hat{\sigma^{2}}=\frac{s s_{E}}{n}=\frac{1}{n} \sum_{i=1}^{n} \hat{e}^{2},
$$

where $\overline{x y}=\frac{1}{n} \sum_{i} x_{i} y_{i}, \overline{x^{2}}=\frac{1}{n} \sum_{i} x_{i}^{2}$, and $\hat{e}_{i}=y_{i}-b_{0}-b_{1} x_{i}$,
$i=1, \ldots, n$, are the residuals.
The ML estimator $\hat{\sigma}^{2}=S S_{E} / n$ for σ^{2} is biased and an unbiased estimator is given by

$$
S^{2}=\frac{S S_{E}}{n-2}
$$

Example (continues)

Data: $n=11, \bar{x}=0.3082, \bar{y}=323.9, \overline{x y}=107.0, \overline{x^{2}}=0.2352$ giving

$$
b_{1}=51.2, b_{0}=\bar{y}-b_{1} \bar{x}=308.1, \hat{\sigma}=10.2
$$

and

$$
y=308.1+51.2 x
$$

ML estimators

B_{0} and B_{1} (stochastic versions of b_{0} and b_{1}) are unbiased estimators for β_{0} and β_{1}, respectively. Also,

$$
B_{0} \sim N\left(\beta_{0}, \sqrt{\frac{\sigma^{2} \sum x_{i}^{2}}{n(n-1) s_{x}^{2}}}\right), B_{1} \sim N\left(\beta_{1}, \sqrt{\frac{\sigma^{2}}{(n-1) s_{x}^{2}}}\right)
$$

Therefore,

$$
\frac{B_{0}-\beta_{0}}{S_{B_{0}}} \sim t_{n-2} \quad \text { and } \quad \frac{B_{1}-\beta_{1}}{S_{B_{1}}} \sim t_{n-2}
$$

(where $S_{B_{0}}^{2}=S^{2} \sum x_{i}^{2} / n(n-1) s_{x}^{2}$ and $S_{B_{1}}^{2}=S^{2} /(n-1) s_{x}^{2}$).
Furthermore, there is a weak correlation between the estimators,

$$
\operatorname{Cov}\left(B_{0}, B_{1}\right)=-\frac{\sigma^{2} \bar{x}}{(n-1) s_{x}^{2}}
$$

Confidence intervals

$100(1-\alpha) \%$ confidence intervals for β_{0} and β_{1} become

$$
I_{\beta_{0}}=b_{0} \pm t_{n-2}(\alpha / 2) \cdot s_{b_{0}} \quad \text { and } \quad I_{\beta_{1}}=b_{1} \pm t_{n-2}(\alpha / 2) \cdot s_{b_{1}} .
$$

and the null hypotheses $H_{0}: \beta_{1}=\beta^{*}$ and $H_{0}: \beta_{0}=\beta^{*}$ can be tested by using the test statistics

$$
T=\frac{B_{1}-\beta^{*}}{S_{B_{1}}} \quad \text { and } \quad T=\frac{B_{0}-\beta^{*}}{S_{B_{0}}}
$$

respectively, which are both t_{n-2}-distributed under H_{0}. Typically, one tests

- $H_{0}: \beta_{1}=0$, no linear relationship between the response y and predictor x.
- $H_{0}: \beta_{0}=0$, the intercept is zero.

Prediction intervals

Given the parameter estimates b_{0} and b_{1}, we can predict the value of a new x-value, x_{p}, (within the interval $\left.\left(\min \left\{x_{1}, \ldots, x_{n}\right\}, \max \left\{x_{1}, \ldots, x_{n}\right\}\right)\right)$ using

$$
y_{p}=b_{0}+b_{1} x_{p}+\hat{\sigma} z_{p},
$$

where $Z_{p} \sim N(0,1)$ is independent of the sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.

The expected value of Y_{p} is

$$
\mu_{p}=\beta_{0}+\beta_{1} x_{p}
$$

and its estimator $\hat{\mu}_{p}=B_{0}+B_{1} x_{p}$.

Prediction intervals

The variance of $\hat{\mu}_{p}$ is

$$
\begin{aligned}
\operatorname{Var}\left(B_{0}+B_{1} x_{p}\right) & =\operatorname{Var}\left(B_{0}\right)+x_{p}^{2} \operatorname{Var}\left(B_{1}\right)+2 x_{p} \operatorname{Cov}\left(B_{0}, B_{1}\right) \\
& =\frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{n-1}\left(\frac{x_{p}-\bar{x}}{s_{x}}\right)^{2}
\end{aligned}
$$

and the variance of Y_{p}

$$
\operatorname{Var}\left(Y_{p}\right)=\operatorname{Var}\left(\hat{\mu}_{p}+\sigma Z_{p}\right)=\sigma^{2}\left(1+\frac{1}{n}+\frac{1}{n-1}\left(\frac{x_{p}-\bar{x}}{s_{X}}\right)^{2}\right)
$$

leading to the $100(1-\alpha) \%$ confidence interval for μ_{p}

$$
I_{\mu_{p}}=b_{0}+b_{1} x_{p} \pm t_{n-2}(\alpha / 2) s \sqrt{\frac{1}{n}+\frac{1}{n-1}\left(\frac{x_{p}-\bar{x}}{s_{x}}\right)^{2}}
$$

and the $100(1-\alpha) \%$ prediction interval for y_{p}

$$
I_{Y_{p}}=b_{0}+b_{1} x_{p} \pm t_{n-2}(\alpha / 2) s \sqrt{1+\frac{1}{n}+\frac{1}{n+1}\left(\frac{x_{p}-\bar{x}}{s_{x}}\right)^{2}}
$$

Prediction intervals

Prediction Interval vs. Confidence Interval

Residuals

The random variables (residuals) \hat{E}_{i} are normally distributed with zero means and weakly correlated with each other.
Under the simple regression model, the scatter plot of the residuals \hat{e}_{i} versus x_{i} should be randomly scattered around the x-axis (left, our previous example). The residual plot will reveal if the simple linear model is not good (middle) or if the noise variance is not constant (right).

The normality can be checked by plotting a normal QQ-plot between ordered residuals and standard normal quantiles.

Connection between b_{1} and sample correlation coefficient

The sample correlation coefficient is

$$
r=\frac{s_{x y}}{s_{x} s_{y}}
$$

where

$$
s_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}, \quad s_{y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2},
$$

and

$$
s_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) .
$$

Note that

$$
b_{1}=\frac{r s_{y}}{s_{x}}
$$

Coefficient of determination

As in ANOVA, we can describe the observations by using sums of squares. First, we can write

$$
y_{i}-\bar{y}=\left(\hat{y}_{i}-\bar{y}\right)+\left(y_{i}-\hat{y}_{i}\right)
$$

and then, by taking squares and summing over all observations, we obtain

$$
\sum\left(y_{i}-\bar{y}\right)^{2}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

or equivalently,

$$
s S_{T}=S S_{R}+s S_{E}
$$

where

- $s s_{T}=(n-1) s_{y}^{2}$ is the total sum of squares
- $s s_{R}=(n-1) b_{1}^{2} s_{x}^{2}=(n-1) r^{2} s_{y}^{2}$ is the regression sum of squares
$-s s_{E}$ is the residual (error) sum of squares.

Coefficient of determination

Therefore,

$$
\frac{s s_{R}}{s s_{T}}=\frac{(n-1) r^{2} s_{y}^{2}}{(n-1) s_{y}^{2}}=r^{2} \quad \text { and } \quad \frac{s s_{E}}{s s_{T}}=1-r^{2}
$$

and r^{2} is called the coefficient of determination.
Also,

$$
s s_{E}=s s_{T}\left(1-r^{2}\right)=(n-1) s_{y}^{2}\left(1-r^{2}\right)
$$

giving an unbiased estimator for σ^{2}, namely

$$
s^{2}=\frac{s s_{E}}{n-2}=\frac{n-1}{n-2} s_{y}^{2}\left(1-r^{2}\right)
$$

Multiple linear regression

We can have any number (less than n) of predictors in a regression model. If we have $p-1, p \geq 2$, predictors, our data consist of

$$
\begin{aligned}
y_{1} & =\beta_{0}+\beta_{1} x_{1,1}+\ldots+\beta_{p-1} x_{1, p-1}+e_{1} \\
& \ldots \\
y_{n} & =\beta_{0}+\beta_{1} x_{n, 1}+\ldots+\beta_{p-1} x_{n, p-1}+e_{n}
\end{aligned}
$$

where e_{1}, \ldots, e_{n} are independently generated from the distribution $N(0, \sigma)$.

Multiple linear regression

We can write

$$
\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}, \beta=\left(\beta_{0}, \ldots, \beta_{p-1}\right)^{T}, \mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)^{T}
$$

and give the multiple regression model in the form

$$
\mathbf{y}=\mathbb{X} \beta+\mathbf{e},
$$

where

$$
\mathbb{X}=\left(\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, p-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n, 1} & \ldots & x_{n, p-1}
\end{array}\right)
$$

is called a design matrix.

Multiple linear regression: estimates

The least squares estimates $\mathbf{b}=\left(b_{0}, \ldots, b_{p-1}^{T}\right)$ are

$$
\mathbf{b}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbf{y}
$$

which (the stochastic variants) are unbiased estimators for β. The covariance matrix is given by

$$
\mathbb{E}\left((\mathbf{B}-\beta)(\mathbf{B}-\beta)^{T}\right)=\sigma^{2}\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1}
$$

Note that the diagonal elements of this matrix give the variances of the parameter estimators.

The predicted responses become

$$
\hat{\mathbf{y}}=\mathbb{X} \mathbf{b}=\mathbb{X}\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbf{y}=\mathbb{P} \mathbf{y}
$$

where $\mathbb{P}=\mathbb{X}\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T}$.

Multiple linear regression: residuals

The residuals are defined as in the single predictor case, i.e.

$$
\hat{\mathbf{e}}=\mathbf{y}-\hat{\mathbf{y}}=\mathbf{y}-\mathbb{P} \mathbf{y}=(\mathbb{I}-\mathbb{P}) \mathbf{y} .
$$

The residuals have zero means and the covariance matrix $\sigma^{2}(\mathbb{I}-\mathbb{P})$.
An unbiased estimate for σ^{2} is given by

$$
s^{2}=\frac{\hat{e}_{1}^{2}+\ldots+\hat{e}_{n}^{2}}{n-p}=\frac{s s_{E}}{n-p} .
$$

Multiple linear regression: Hypothesis testing

As in the single predictor case, the parameter estimators B_{i}, $i=0, \ldots, p-1$ are normally distributed and

$$
\frac{B_{j}-\beta_{j}}{S_{B_{j}}} \sim t_{n-p}
$$

Often, one tests the null hypotheses $H_{0}: \beta_{i}=0$, against $H_{1}: \beta_{i} \neq 0, i=0, \ldots, p-1$.

Multiple linear regression: Coefficient of multiple determination

The coefficient of multiple determination can be computed as in the simple regression model with one predictor, i.e.

$$
R^{2}=1-\frac{S S_{E}}{S S_{T}}
$$

where $s s_{T}=(n-1) s_{y}^{2}$.
Since R^{2} is increasing when new predictors are added (whether they have a relationship with the response variable of not), the coefficient should be adjusted so that it does not overestimate the contribution of the predictors. The adjusted coefficient is defined as

$$
R_{a}^{2}=1-\frac{n-1}{n-p} \cdot \frac{s s_{E}}{s s_{T}}=1-\frac{s^{2}}{s_{y}^{2}} .
$$

which approaches to R^{2} when p decreases.

Remark

We can use multiple regression even in the case of a more complex model in terms of one variable, for example

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2} \quad \text { or } \quad y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3} .
$$

In the first case, we can set

$$
x_{1}=x \quad \text { and } \quad x_{2}=x^{2}
$$

and in the second case,

$$
x_{1}=x, \quad x_{2}=x^{2}, \quad \text { and } \quad x_{3}=x^{3} .
$$

Case study: catheter length

Heart catherization is sometimes performed on children with congenital heart defects by using a Teflon tube (catheter). The length of the catheter, y, is determined by the child's height h and/or the child's weight w. In the study, $n=12$. Three regression models are compared:

- Model 1: $y=\beta_{0}+\beta_{1} h+\sigma z$
- Model 2: $y=\beta_{0}+\beta_{1} w+\sigma z$
- Model 3: $y=\beta_{0}+\beta_{1} h+\beta_{2} w+\sigma z$

Case study: catheter length

The null hypotheses that are tested below are $H_{0}: \beta_{i}=0$, $i=0,1,2$. In the table below, * means that the test result is significant at 5% level.

Estimates	Model 1 (height)	t-value	Model 2 $($ weight	t-value	Model 3 (both)	t-value
$b_{0}\left(s_{b_{0}}\right)$	$12.1(4.3)$	2.8^{*}	$25.6(2.0)$	12.8^{*}	$21(8.8)$	2.39^{*}
$b_{1}\left(s_{b_{1}}\right)$	$0.6(0.10)$	6.0^{*}	$0.28(0.04)$	7.0^{*}	$0.20(0.36)$	0.56
$b_{2}\left(s_{b_{2}}\right)$	-	-	-	-	$0.19(0.17)$	1.12
s	4.0		3.8		3.9	
R^{2}	0.78		0.80		0.81	
R_{a}^{2}	0.76		0.78		0.77	

Which model is the best one?

