MVE035/600, VT-20: IMPLICIT FUNCTION THEOREM FOR MORE THAN ONE EQUATION

Let n, k be positive integers and let F_1, \ldots, F_k be functions of n+k variables $x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+k}$. Consider a system of equations, i.e.: of level surfaces,

(0.1)
$$F_1(x_1, \dots, x_{n+k}) = c_1,$$

$$\vdots$$

$$F_k(x_1, \dots, x_{n+k}) = c_k.$$

The basic question is: when can we eliminate the k variables x_{n+1}, \ldots, x_{n+k} from this system? Suppose each F_i is a C^1 -function and, for the sake of argument, suppose we can indeed eliminate the above k variables so that there are implicitly defined C^1 -functions f_1, \ldots, f_k of n variables such that

(0.2)
$$x_{n+m} = f_m(x_1, \dots, x_n), \quad m = 1, \dots, n.$$

Substituting (0.2) into (0.1), the *i*:th equation, for each i = 1, ..., k, reads

$$(0.3) F_i(x_1, \ldots, x_n, f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)) = c_i.$$

Using the chain rule, we can partially differentiate (0.3) with respect to x_j , for each $j = 1, \ldots, n$, and find that

(0.4)
$$\frac{\partial F_i}{\partial x_j} + \sum_{m=1}^k \frac{\partial F_i}{\partial x_{n+m}} \frac{\partial f_m}{\partial x_j} = 0.$$

Note that (0.4) describes in total a system of kn equations, one for each $i=1,\ldots,k$ and $j=1,\ldots,n$. If you stare long enough, you'll see that this system can be written in matrix form as

$$(0.5) B + AX = 0,$$

where $A = (a_{uv})$ is a $(k \times k)$ -matrix, $B = (b_{uv})$ is a $(k \times n)$ -matrix and $X = (c_{uv})$ is a $(k \times n)$ -matrix. Specifically,

(0.6)
$$a_{uv} = \frac{\partial F_u}{\partial x_{n+v}}, \quad b_{uv} = \frac{\partial F_u}{\partial x_v}, \quad c_{uv} = \frac{\partial f_u}{\partial x_v}.$$

Note that the only *unknowns* here are the functions f_m , m = 1, ..., k, hence X is the "unknown" matrix in (0.5). Eq. (0.5) has a unique solution if and only if the matrix A is invertible, hence if and only if $\det(A) \neq 0$.

The Implicit Function Theorem states that, if $\det(A) \neq 0$ in a point $\boldsymbol{a} \in \mathbb{R}^{n+k}$ satisfying the system (0.1), then indeed there exist C^1 -functions f_m satisfying (0.2) in a neighborhood of that point. Moroever the kn partial derivatives $\frac{\partial f_u}{\partial x_v}$, $u = 1, \ldots, k, v = 1, \ldots, n$, which are the entries of the matrix X, are given in matrix form by $X = -A^{-1}B$.

This is the most general form of the IFT. It reduces to what we presented in class when k = 1.