
DAT257
Lecture 2: Working in agile teams

Jonas Petrén

Welcome! We will begin in a few minutes

Agenda

Working in teams
Social contract
Cross-functional teams

Agile Planning
Task boards
Estimation

How to know how you are doing?
Burn-up chart
Burn-down chart
Velocity
Other metrics

Ending

Have you ever...?

Had a great evening out with friends
without pre-booking all the activities?

Planned a family event at a high level,
and left the little details to the end?

Found a cheap and easy way to try a
new hobby, and then learned it’s not
for you?

Ran an idea by a friend before fully
forming it, and changed the idea as a
result of the conversation?

Congratulations!
This is agile!

Jonas Petrén

10 years in software testing, development and
as test manager. 6+ years of Scrum Master
experience. Full-time Scrum Master since
beginning of 2018. Employed by HiQ since
2012.

Civilingenjör Informationsteknologi, Linköping
University, 2003-2008

Today: Senior Scrum Master/Agile coach

Certified Professional Scrum Master III

The goal for today

To get an understanding of
how it is to work in an agile
team

Working in teams
"The way a team plays as a whole determines its
success. You may have the greatest bunch of individual
stars in the world, but if they don’t play together, the
club won’t be worth a dime." – Babe Ruth

A group – Everybody is running
their own race

A team – Everyone takes
responsibility for the whole field
and the result. We win together

or lose together

A team – Everyone takes
responsibility for the whole

sprint and the result. We win
together or lose together

A group – Everybody is running
their own race

Why teams?

We work with COMPLEX PROBLEMS.
Many brains think better than one.

A team TACKLES CHALLENGES instead of
just coping with them

Without teams we have HANDOVERS
which results in information loss

On the personal front: teams result in
faster PROFESSIONAL GROWTH and
greater ENGAGEMENT

Social contract or working agreement

Contains your team's agreement on how
to work together

Make the rules explicit so that everyone
knows how to act. No unspoken rules

Enfores good behaviour

Hold each other to account for keeping the
agreements

Make sure everyone in the team can stand
behind the rules and commit to them. If
not, you set yourself up for failure
immediately

Example from Jonas'
previous team
• Information is shared in Teams

• We communicate if we have vacation,
at least one day before

• Meetings start and end on time

• Ask questions, don't wait to be given
information

• If you know the answer, make time to
answer

Story: Fikapinnar

If someone broke the agreements
e.g. came late to a meeting he/she
got a "fikapinne" and when
someone reached ten "fikapinnar"
he/she would buy fika to the team

Takeaway: This may work very well in a certain
team but may not work in another

Other examples of social contract agreements

We are available between 9:00 – 15:00, unless the team is notified

Everybody's opinion should be heard

There are no stupid ideas

No electronic device distractions

Make decisions by consensus

No team commuication after 6pm or on weekends

We always do pair-programming

What you should do this week

Create your team's social
contract. Maximum five things

Write them in a text file and put it
in your team repository

Consider these areas:
How do we keep each other
informed?

How do we behave when we meet
(physically and digitally)?

How do we make decisions?

Don't rush! Take time
to discuss so that

everyone can commit
to all rules

Discussion 2 minutes

Turn to your seat
neighbour. Discuss the
first thing that you
would like to add to
your team's social
contract

Cross-
functional
teams

"Scrum Teams are cross-functional, meaning
the members have all the skills necessary to
create value each Sprint."

This is not the same as "everyone should be
able to do everything" or "we don't need
specialists"

It just means that the team should have all
skills needed to take a task and turn it in to
software/product. They are not dependent on
people outside the team.

And we definitely need specialists

Agile planning
“Agile planning is when we decide together,
every little while, what are the best things to
do next so that we achieve what we want at
the end.” Gil Broza

Setting the expectations right when working in agile

The expectation is not to deliver a big
chunk of work six months from now

The expectation is to deliver SMALL
THINGS OFTEN and to CONTINUOUSLY
LEARN what the users need and what
we will do next to meet their needs

Give
something

small to a user
that satisfies a

need

Gather and
evaluate the

user’s
feedback

Update or add
the next small

thing

Know where you are going!

Yesterday's weather is a
good prediction of
today's weather

The sprint planning:

We do a “forecast”, i.e.
a best guess

This is not a “target” or
”commitment” !

Task boards
To visualize and keep track of work to be done

How it started – a physical board

Scrum Task Board (mountaingoatsoftware.com)

https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/task-boards

Jira – the most popular tool

Jira Scrum Boards | Atlassian

https://www.atlassian.com/software/jira/features/scrum-boards

Azure DevOps – also very popular

Azure DevOps for the IT Pro: tips & tricks - 4bes.nl

https://4bes.nl/2020/03/04/azure-devops-for-the-it-pro-tips-tricks/

Trello – easy to use

GitLab

Issue boards | GitLab

https://docs.gitlab.com/ee/user/project/issue_board.html?_gl=1*gsfx8m*_ga*NDIxMDQ0ODI4LjE2Nzg4NjYyMTA.*_ga_ENFH3X7M5Y*MTY3ODg2NjIxMC4xLjEuMTY3ODg2NzM4OC4wLjAuMA..

Comparison
Type of board Advantages Disadvantages

Physical Very easy to use.
Requires no learning curve

It can only be updated
physically, not remotely

Jira Powerful Contains much more than you
need for this course

Azure DevOps Powerful Contains much more than
you need for this course.
Costs money

Trello Easy to use

GitLab Easily accessed since you are
going to work in GitLab with
your code

?

Agile estimation

A puzzle with 2000 pieces. How many pieces remain?
Don’t say your answer out loud. Send it to petrenjo@chalmers.se, subject: "Puzzle"

mailto:petrenjo@chalmers.se

Learnings

Estimating as a group is
powerful

Provide ranges, not
single numbers

You will (probably) get
better over time

Relative estimation:
how relates A to B? A to C? B to C?

Absolute estimation:
how big is A? B? C? A

B

C

𝑠𝑡𝑜𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑓(𝑠𝑖𝑧𝑒, 𝑟𝑖𝑠𝑘, 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)

Why Fibonacci?

1, 2, 3, 5, 8, 13, 21…

Relative estimation
is quicker and gives
better results

Why are story points better than hours?

But you said it
would take forty
hours and now it

has been two
weeks!!

Alternative to numeric
story sizes

T-shirt sizes: S, M, L, XL

Even simpler: small, big
and unknown

Det här fotot av Okänd författare licensieras enligt CC BY-SA-NC

https://www.newgrounds.com/art/view/ryanhayward/art-t-shirt-design
https://creativecommons.org/licenses/by-nc-sa/3.0/

To make
people talk

The purpose of estimation

How to know how you are doing?
Burn up and burn down charts

Burn up chart – shows completed work

What is a burn up chart? (clariostechnology.com)

https://www.clariostechnology.com/productivity/blog/whatisaburnupchart/

Burn down chart – shows remaining work

What is a burndown chart? (clariostechnology.com)

https://www.clariostechnology.com/productivity/blog/whatisaburndownchart/

These burndowns
mean nothing

These are not
perfect but much
better than before

Velocity

The velocity of a team is
based on their past
performance

How much was ”Done”?

Note! Velocity is not a
measurement of
effectiveness, it's just the
team's own metric to use
for planning

0

10

20

30

40

50

60

70

26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Sprint

Finished story points

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Velocity (points per worked day) This is good for
planning!

This is not good
for planning!

“Building more software
faster is always a good idea.
But, it’s never the solution.”

Jeff Patton

This is the correct priority

1) Do the right things

2) Make improvements

Don't:

Compare velocity between teams

Make story points to a game

Very good, Ola! Look at
that nice burndown! This
looks good when I show it

to my project manager

Story: Cheating

The “Scrum Master”

Takeaway: The burn-down should only be
used within a team

Other metrics

Metrics

Choose 1-3 metrics that help you quickly
assess product health and detect if your
improvement efforts are working

Example 1: For products like Twitter that
might be the number of tweets per week, or
average time spent reading tweets per day

Example 2: For Amazon it might be number
of items in your shopping cart, or number of
customers writing reviews for purchased
items

KPI – Key Performance
Indicators

A key performance indicator is a metric
that you can pay attention to that lets
you quickly see IF YOUR PRODUCT IS
WORKING AS EXPECTED in the market

Look at the TRENDS: are you
improving, deteriorating, or flat-lining?

How do they COMPARE to what you
expected? To last month? To last year?

Story: the tester and the developer

Takeaway: You get what
you measure

The tester was rewarded for how
many bugs he/she reported

The developer was rewarded for how
many bugs he/she fixed

What do you think happened?

A more academic approach

We believe that _______________ (hypothesis)

To verify that we will __________________ (do some test)
and measure ________________ (some parameters)

We are right if _______________ (this criteria is met)

From Strategyzer

Example

We believe that more people will buy
IKEA closets on the website if it was
easier to navigate

To verify that we will present in an
attractive way which closets and
additional items that are popular to
combine and measure sales figures for
closets

We are right if sales figures go up 50 % in
the next three months compared to last
year at the same time

DevOps metrics

Deployment frequency: how
often does your organization
deploy code to production or
release it to end users?

State of DevOps report 2022

DevOps metrics

Lead time for changes: how
long does it take to go from
code committed to code
successfully running in
production?

State of DevOps report 2022

DevOps metrics

Time to restore service: how
long does it generally take to
restore service when a
service incident or a defect
that impacts users occurs
(e.g, unplanned outage or
service impairment)?

State of DevOps report 2022

DevOps metrics

Change failure rate: what
percentage of changes to
production or released to users
result in degraded service (e.g.,
lead to service impairment or
service outage) and subsequently
require remediation (e.g., require
a hotfix, patch)?

State of DevOps report 2022

AARRR – Pirate metrics

Acquisition – Opened the app, time
spent, clicked around etc.

Activation – Create an account, visiting
different sectors of the app, etc.

Retention – Are users coming back? Are
they engaged?

Referral – Do users recommend us?
Leave a review, unlock sections etc.

Revenue – Spend per customer, using
premium features etc.

What Is AARRR? Pirate Metrics Defined. | Built In
An introduction to the AARRR framework | by Gino Arendsz | Medium

https://builtin.com/growth-hacking/aarrr
https://medium.com/@ginoarendsz/an-introduction-to-the-aarrr-framework-b8570d6ae0d2

Ending

Key takeaways, 1 of 3

The expectation in agile is to
deliver SMALL THINGS OFTEN and
to CONTINUOUSLY LEARN what
the users need and what we will
do next to meet their needs

Give
something

small to a user
that satisfies a

need

Gather and
evaluate the

user’s
feedback

Update or add
the next small

thing

Key takeaways,
2 of 3

Working in a good team
is very rewarding, but it
takes time and hard
work to be a good team

A social contract
helps. Create one in
your team this week!

Key takeaways, 3 of 3

Agile estimation, planning and
working with metrics are difficult,
but give it a try

Tip 1: Use relative estimation (i.e.
comparing with things you have
already done). Don't use hours

Tip 2: Make sure to talk and agree
about what's included in a task

Tip 3: Use one or two metrics if you
think it adds value to your process

Feedback time!

Go to menti.com
on your
smartphone or
computer and
enter the code on
the screen

	Default Section
	Slide 1: DAT257
	Slide 2: Agenda
	Slide 3: Have you ever...?
	Slide 4
	Slide 5: Jonas Petrén
	Slide 6: The goal for today

	Working in teams
	Slide 7: Working in teams
	Slide 8
	Slide 9
	Slide 10: Why teams?
	Slide 11: Social contract or working agreement
	Slide 12: Example from Jonas' previous team
	Slide 13: Story: Fikapinnar
	Slide 14: Other examples of social contract agreements
	Slide 15: What you should do this week
	Slide 16: Discussion 2 minutes
	Slide 17: Cross-functional teams

	Agile Planning
	Slide 18: Agile planning
	Slide 19: Setting the expectations right when working in agile
	Slide 20
	Slide 21
	Slide 22
	Slide 23

	Task boards
	Slide 24: Task boards
	Slide 25: How it started – a physical board
	Slide 26: Jira – the most popular tool
	Slide 27: Azure DevOps – also very popular
	Slide 28: Trello – easy to use
	Slide 29: GitLab
	Slide 30: Comparison

	Estimation
	Slide 31: Agile estimation
	Slide 32: A puzzle with 2000 pieces. How many pieces remain? Don’t say your answer out loud. Send it to petrenjo@chalmers.se, subject: "Puzzle"
	Slide 33: Learnings
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Alternative to numeric story sizes
	Slide 42: The purpose of estimation

	Burn down and burn up
	Slide 43: How to know how you are doing?
	Slide 44: Burn up chart – shows completed work
	Slide 45: Burn down chart – shows remaining work
	Slide 46
	Slide 47

	Velocity
	Slide 48: Velocity
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Story: Cheating

	Metrics and KPIs
	Slide 56: Other metrics
	Slide 57: Metrics
	Slide 58: KPI – Key Performance Indicators
	Slide 59: Story: the tester and the developer
	Slide 60: A more academic approach
	Slide 61: Example
	Slide 62: DevOps metrics
	Slide 63: DevOps metrics
	Slide 64: DevOps metrics
	Slide 65: DevOps metrics
	Slide 66
	Slide 67: AARRR – Pirate metrics

	Ending
	Slide 68: Ending
	Slide 69: Key takeaways, 1 of 3
	Slide 70: Key takeaways, 2 of 3
	Slide 71: Key takeaways, 3 of 3
	Slide 72
	Slide 73
	Slide 74

