
DAT257
Lecture 4: Building the product

Jonas Petrén

Welcome! We will begin in a few minutes

Jonas Petrén

10 years in software testing, development and
as test manager. 6+ years of Scrum Master
experience. Full-time Scrum Master since
beginning of 2018. Employed by HiQ since
2012.

Civilingenjör Informationsteknologi, Linköping
University, 2003-2008

Today: Senior Scrum Master/Agile coach

Certified Professional Scrum Master III

Agenda

• Incremental and iterative delivery
• Output Outcome Impact

• Minimum Viable Product

• Product discovery

• The Founder

• How to break down work

• Scaled Scrum

• Ending

The goal for today

Learn how agile teams build
products

OUTPUT, OUTCOME, IMPACT
Very similar words, easy to

misunderstand

Output, outcome and impact

Sammanställt av Jonas Persson, v1.0

Output is what
you are
producing e.g.
code,
documents...

Outcome is
the EFFECT of your
output, something
that happens
because of it

Impact are long-
term or indirect
effects that you
WISH TO REACH

May lead to

You want to MINIMIZE OUTPUT, but MAXIMIZE OUTCOME AND IMPACT

May lead to

Output, outcome and impact

Sammanställt av Jonas Persson, v1.0

Output is the
cost i.e. the price
you pay to build
your product

Outcome is
the EFFECT of your
output, something
that happens
because of it

Impact are long-
term or indirect
effects that you
WISH TO REACH

May lead to

You want to MINIMIZE OUTPUT, but MAXIMIZE OUTCOME AND IMPACT

May lead to

Output, outcome och impact

OUTPUT – All pigs have built a house

OUTCOME – Practical Pig is safe
from the wolf because he built a
solid house

IMPACT – Practical Pig gets popular
among the female pigs and can plan
for a life with wife and children

What Practical Pig can hope for

An effect that one of them got

What they all are doing

Image: Jeff Patton

Image: Christer Hedberg

Going to work, day in and day out:
Output: coaching Scrum, helping agile teams...
Outcome: making something meaningful for others
Impact: by doing a good job I hope to be getting more
and more exciting assignments

Evening class in French
Output: learning words and phrases
Outcome: being able to travel in France by speaking only
French

Teaching this course
Output: slides
Outcome: that you learn agile methodology
Impact: when we meet in a future workplace you
remember me as someone that made a good job

INCREMENTAL AND
ITERATIVE

Very similar words, easy to
misunderstand

Incremental and iterative

Incremental Development is when each
successive version of a product is usable,
and each builds upon the previous version
by adding user-visible functionality.

Agile projects are iterative insofar as they
intentionally allow for “repeating” software
development activities, and for potentially
“revisiting” the same work products

Agile Glossary and
Terminology | Agile
Alliance

https://www.agilealliance.org/agile101/agile-glossary/
https://www.agilealliance.org/agile101/agile-glossary/
https://www.agilealliance.org/agile101/agile-glossary/

Don’t do this

This is a trap,
because it says

“nothing is done
before everything

is done”!

Do this!

The customer may
quit at any point and
still have something

valuable.

The customer decides
if he/she would like to

spend more money
for a new layer

Do this!

The customer may
quit at any point and
still have something

valuable.

The customer decides
if he/she would like to

spend more money
for a new layer

Image: Jeff Patton

Discussion 2 minutes

If you have decided on
a project. How can
you get "the big
picture" early. What's
your first prototype?

PRODUCT DISCOVERY
How do we know what to build?

Old days

• An idea was put in a roadmap.
Planning how long it would take.
Allocating time and resources

• The idea would get funding

• A team would start working on it

• Still working...

• Still working...

• Releasing to users... The team
starts working on next initiative

• Perhaps getting feedback

Modern days – Product discovery

1.What problems are we
solving, and for who?

2.What will customers and
users value?

3.What can users use to
reach their goals?

4.What's feasible to build
given the tools and time
we have?

• Develop a small solution, an
early prototype

• Try it we beta testers. Observe
them and interview them to get
their feedback

• Refine your product. Improve it a
little. Repeat

Jeff Patton – User
story mapping (book)

Discovery team

A product owner leads the
discovery team that includes
individuals that have the
knowledge and skills to identify a
valuable, usable, and feasible
product.

The Founder (movie):

• Working with a strong vision:
"Orders ready in thirty seconds,
not thirty minutes"

• Customer focus

• Prototyping

• Feedback

• Enabling flow

• Continuous improvements

Image: Jeff Patton and
Henrik Kniberg

Does it work?
(Functionality and deployment)

Does it work well?
(Security, performance, capacity)

Is it usable?
(Usability, design)

Is it useful?
(Behaviour changes,

user-level goals)

Is it successful?
(Organisation goals)

Image: Jeff Patton – User
story mapping (book)

To break down work
Explained in 15 examples

How to think when breaking down work

What is the smallest piece of working
functionality that we can give to a user?
This is the first user story.

Gather feedback and identify the next
stories

Example – roles

Situation

A feature should be added for different roles
(admin, basic user, support...)

What’s the smallest thing we can give to a user?

Implement one role at a time

Then what?

Implement the other roles, one at a time

This is the first
user story!

These are the
next user stories

Example – user interface

Situation

We need a user interface

What’s the smallest thing we can give to a user?

Start with a text based UI (terminal window) or
do a prototype on paper

Then what?

Then create a graphical UI

One of these is
the first user

story!

This is the next
user story!

Example – new feature including error
handling
Situation

A new feature should be created, including error
handling

What’s the smallest thing we can give to a user?

Make a “happy path” implementation first i.e. where
everything goes right

Then what?

Add error handling, stepwise

Example - automation

Situation

A feature should work in an automated flow/sequence

What’s the smallest thing we can give to a user?

Make it work manually

Then what?

Make a step-by-step instruction list on how to perform the
manual sequence
Make it work automatically
Integrate it to a build pipeline, if desired

Example – multi-user scenario

Situation

A feature should work in a multi-user scenario

What’s the smallest thing we can give to a user?

Make it work in single-user scenario

Then what?

Implement support for multi-user

Example – operating systems

Situation

A new feature should work on several operating
systems

What’s the smallest thing we can give to a user?

Make it work on one operating system (this
could/should probably be broken down to tasks)

Then what?

Then make it work on the others, one at a time

Example – new technology domain

Situation

We are facing a new technology domain (i.e. going from monolith to
microservices, changing from one vendor to another e.g. from Azure to
Amazon...)

What’s the smallest thing we can give to a user?

Learn as much as needed to provide a decision material to hand to
PO/manager/architect/stakeholder and/or create a proof-of-concept

Then what?

Create one or more solution proposals, broken down to well-defined steps

Implement the first step

Implement the rest

Example – generic cases

Situation

A feature should work in generic cases

What’s the smallest thing we can give to a user?

Make it work in a basic case first

Then what?

Add support for generic cases

Examples - scalability

Situation

Something should work in big scale e.g. large data
volumes, many concurrent users or total number of
users in the system...

What’s the smallest thing we can give to a user?

Make it work in small scale

Then what?

Scale it, gradually

Examples - bugs

Situation

Troubleshooting a bug

What’s the smallest thing we can give to a user?

Can we reproduce the behaviour? Then ask, is it a bug
or works as designed? This is a good way to catch
misunderstandings.

Then what?

1. Propose a workaround, this could well be enough

2. Implement a solution

Examples - documentation

Situation

We should create documentation/a specification

What’s the smallest thing we can give to a user?

Make a draft (outline important chapters or
write the abstract first)

Then what?

Take each chapter as separate tasks

Example - dynamic

Situation

Something should work dynamically

What’s the smallest thing we can give to a user?

Make it work hardcoded

Then what?

Then make it dynamically, and don’t forget to remove
hardcoded values

Example - export

Situation

To be able to export data to several formats (Excel, pdf, ...)

What’s the smallest thing we can give to a user?

The first user story is to process the data and create the
simplest output, e.g. a text file

Then what?

Add support for more formats

Example – store data persistently

Situation

Data should be stored persistently

What’s the smallest thing we can give to a user?

Make it work with transient information (i.e. That isn’t
saved when the application is closed)

Then what?

Store the data persistently

Example - size

Situation

A task feels too big

What’s the smallest thing we can give to a user?

Find the biggest risk or uncertainty

Then what?

When the biggest risk is under control, handle
the next risk and so on. Iterate like this until you
have an overview of the total scope

How to find the small pieces to do first

START SMALL
• Make a solution on paper
• Make a hardcoded solution
• Create a draft for a document
• Split by functionality: Make a solution for one role, file

format, operating system... at a time
• Split by capacity: Make a solution work for e.g. a single

user, small data volumes, only for transient information...
before scaling capacity

START HAPPY AND RISK-FOCUSED
• Implement the happy path first
• Focus on the biggest risk first
• Reproduce bugs and propose workaround before

implementing a solution
• Learn about new technologies, then do a proof-of-concept

before making a full transition from one thing to another

Compiled by Jonas Petrén

Scaling Scrum
When you have more than one team working on the same product

Takeaway: Scaling agile adds so much more
complexity that need to be taken care of

Key
takeaways

Key takeaway, 1 of 3

Sammanställt av Jonas Persson, v1.0

Output is the
cost i.e. the price
you pay to build
your product

Outcome is
the EFFECT of your
output, something
that happens
because of it

Impact are long-
term or indirect
effects that you
WISH TO REACH

May lead to

You want to MINIMIZE OUTPUT, but MAXIMIZE OUTCOME AND IMPACT

May lead to

Key takeaway, 2 of 3

Think in small pieces

Do a prototype early

Deliver often

Get feedback

Improve

Image: Jeff Patton – User
story mapping (book)

Key takeaway, 3 of 3

Talk and draw a lot in your teams. Make sure
everyone is onboard on what you are doing

	Default Section
	Slide 1: DAT257
	Slide 2: Jonas Petrén
	Slide 3: Agenda
	Slide 4: The goal for today

	Output, outcome and impact
	Slide 5: OUTPUT, OUTCOME, IMPACT
	Slide 6: Output, outcome and impact
	Slide 7: Output, outcome and impact
	Slide 8: Output, outcome och impact
	Slide 9
	Slide 10
	Slide 11

	Incremental and iterative
	Slide 12: INCREMENTAL AND ITERATIVE
	Slide 13
	Slide 14: Incremental and iterative
	Slide 15: Don’t do this
	Slide 16: Do this!
	Slide 17: Do this!
	Slide 18
	Slide 19: Discussion 2 minutes
	Slide 20

	Product discovery
	Slide 21: PRODUCT DISCOVERY
	Slide 22: Old days
	Slide 23: Modern days – Product discovery
	Slide 24
	Slide 25: Discovery team
	Slide 26: The Founder (movie):
	Slide 27
	Slide 28
	Slide 29

	To break down work
	Slide 30: To break down work
	Slide 31: How to think when breaking down work
	Slide 32: Example – roles
	Slide 33: Example – user interface
	Slide 34: Example – new feature including error handling
	Slide 35: Example - automation
	Slide 36: Example – multi-user scenario
	Slide 37: Example – operating systems
	Slide 38: Example – new technology domain
	Slide 39: Example – generic cases
	Slide 40: Examples - scalability
	Slide 41: Examples - bugs
	Slide 42: Examples - documentation
	Slide 43: Example - dynamic
	Slide 44: Example - export
	Slide 45: Example – store data persistently
	Slide 46: Example - size
	Slide 47: How to find the small pieces to do first

	Scaling Scrum
	Slide 48: Scaling Scrum
	Slide 49
	Slide 50

	Ending
	Slide 51: Key takeaways
	Slide 52: Key takeaway, 1 of 3
	Slide 53: Key takeaway, 2 of 3
	Slide 54: Key takeaway, 3 of 3
	Slide 55
	Slide 56

