
Abstract

As software developers we are engineers because we 
make useful machines.  We are concerned both with the 
world, in which the machine serves a useful purpose, and 
with the machine itself.  The competing demands and at-
tractions of these two concerns must be appropriately bal-
anced.  Failure to balance them harms our work.  Certainly 
it must take some of the blame for the gulf between re-
searchers and practitioners in software development.

To achieve proper balance we must sometimes fight 
against tendencies and inclinations that are deeply in-
grained in our customary practices and attitudes in soft-
ware development.  In this paper some aspects of the 
relationship between the world and the machine are ex-
plored; some sources of distortion are identified; and some 
suggestions are put forward for maintaining a proper bal-
ance.  

1 Introduction: Engineering and the World

Because software seems to be an intangible intellectual 
product we can colour it to suit our interests and prejudic-
es.  For some people the central product of software devel-
opment is the computation evoked.  For some it is the 
social consensus achieved in negotiating the specifications.  
For some it is a mathematical edifice of axioms and theo-
rems.  Some people have been pleased to have their pro-
grams described as logical poems.  Some have advocated 
literate programming.  Some see software as an expression 
of business policy.  

But many people here will surely want to think of soft-
ware development as a kind of engineering.  The most con-
spicuous dissenters from this view are, presumably, absent 
from this conference.  Yet we do not speak of engineering 

mathematical theorems, or poems, or works of literature, 
or business policies.  Why, then, should we speak of 
engineering software?

Software development is engineering because it is 
concerned to make useful physical devices to serve 
practical purposes in the world.  Software is a description 
of a machine.  We build the machine by describing it and 
presenting our description to a general-purpose computer 
that then takes on the attributes and behaviour of the 
machine we have described.  That is why we compare 
ourselves to aeronautical and electrical and automotive and 
chemical engineers, and aspire to emulate their enviably 
well-established repertoires of ‘theoretical foundations and 
practical disciplines’.  They too are concerned to make 
useful physical devices.

The purpose of a machine, which defines its practical 
value, is located in the world in which the machine is to be 
installed and used.  The value of a word-processing system 
is to be judged not by examining its software structure or 
code but by looking at the quality of the documents it 
produces, and at the ease and comfort and satisfaction it 
affords its operators.  The requirements for an Air Traffic 
Control system are to be sought in the aeroplanes and the 
airspace and the runways and the control tower.  The 
success of a theatre reservation system depends on the ease 
and speed of booking, the efficiency of payment collection, 
the convenience of dealing with cancellations.

The requirement — that is, the problem — is in the 
world; the machine is the solution we construct.  The point 
is trite and obvious.  But perhaps we have yet to come to 
terms with it, to understand it fully, and to act on that 
understanding.  

2 Four Facets of Relationship

The relationship between the world and the machine is 
not simple.  It has several facets, and different facets are 
reflected with different intensity in different systems.  We 
can recognise at least four facets:

• the modelling facet, where the machine simulates
the world;
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• the interface facet, where the world touches the 
machine physically;

• the engineering facet, where the machine acts as an
engine of control over the behaviour of the world;
and

• the problem facet, where the shape of the world 
and of the problem influences the shape of the 
machine and of the solution.

2.1 The Modelling Facet

In many systems the machine embodies a model or a 
simulation of some part of the world.  There are data 
models, object models, process models.  The purpose of 
such a model is to provide efficient and convenient access 
to information about the world.  By capturing states and 
events of the world and using them to build and maintain 
the model we provide ourselves with a stored information 
asset that we can exploit later when information is needed 
but would be harder or more expensive to acquire directly.  

The model can provide the information we need 
because there are certain common descriptions that are 
true both of the model itself inside the machine and of the 
aspects of the world outside that it models.  Of course, the 
descriptions must be differently interpreted when we apply 
them to the world and when we apply them to the model.  
If a common description, written using deliberately 
meaningless identifiers, is:

∀ x : B(x) • ( ∃! y • W(y) ∧ A(x,y) )
then we may interpret it in the world as asserting:

For each novel x there is a unique writer y 
that is the author of the novel.

And we may interpret it in the database inside the machine 
as asserting:

For each record of type B there is a unique 
record of type W to which there is a pointer
from the B record.

If a mapping is provided between the database model 
and the world — for example, if each B record contains a 
character string that is the title of the novel and each A 
record contains a character string that is the name of the 
author — then information about the world can be 
obtained by inspecting the database.

Because the world and the machine are both physical 
realities and not merely abstractions, the common descrip-
tion captures only a part of the truth about each.  For each, 
there are many other descriptions that might be given.  
Some novels have more than one author, or are anony-
mous; writers sometimes use pseudonyms; some novels are 
linked to others in a series such as Trollope’s Barchester 
novels; some books appear in revised editions.  All these 
aspects of the world may have been ignored in the model-
ling, and have no reflection in the database.  In the data-
base, similarly, records may be deleted to save space, or 

carefully placed in physical storage to speed access; 
relations may be in 3rd or 4th or 5th normal form; fields 
may have null values; there may be backwards pointers 
and indices.  None of these database properties reflects any 
aspect of the world being modelled.  

Considering the set DW of all descriptions that assert 
truths about the world, and the set DM of all descriptions 
that assert truths about the machine, the modelling 
relationship involves precisely those that are in their 
intersection:

2.2 The Interface Facet

The problem is not in the machine; and yet the 
machine can provide the solution to the problem.  This is 
possible, of course, only because there is interaction at an 
interface between the machine and the world.  By 
‘interaction’ I mean the sharing of phenomena.  This is 
not interaction at a distance, by message passing or remote 
procedure call or writing and reading on a blackboard, but 
direct participation in common events.  The participation 
is not symmetrical: one party may have the power to 
initiate the event, and the other may or may not have the 
power to inhibit it.  States may be similarly shared; one 
party may have the power to change the value of the state, 
and both may have the power to sense it.

Consider, for example, a system to control a lift.  
There are sensor switches in the lift shaft at the floors, 
turned on and off by the arrivals and departures of the lift 
car.  The states of these switches are shared with the 
machine.  When the sensor at floor 3 in the world is on, 
the bit in the machine in the array element 
floor_sensors[3] is set to 1.  This is a shared state, 
controlled by the world.

When the upwards call button is pressed at floor 3, 
this is an event in the world.  It is also an event in the 
machine, where is is observable as the occurrence of an 
input signal on line U3.  This is a shared event, controlled 
by the world.

When the machine emits a signal on its output line 
MU, the polarity of the lift motor is set to upwards; when it 
emits a signal on its output line M+, the motor is switched 
on.  These are shared events, controlled by the machine.

These shared events and states lock the machine and 
the world in a partnership, sharing the traces of events and 
states in which they both participate.  At a certain level of 
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abstraction, their behaviours can be described identically.  
But it is a very abstract level indeed, for at least two 
reasons.  

First, because the shared phenomena are only a subset 
— typically, a small subset — of the phenomena of the 
world, and an equally small subset of the phenomena of 
the machine.  If we call the set of phenomena of the world 
PW, and the set of phenomena of the machine PM, then 
the set of shared phenomena is the (relatively small) 
intersection of these two sets:

Second, because a description that describes the world 
and the machine identically must necessarily abstract away 
the control properties.  An event controlled by the world 
has quite different significance from an event controlled by 
the machine.  A description in which this distinction is not 
made is a very pallid reflection indeed of the reality with 
which it is concerned.  As Lamport pointed out in an ac-
count of TLA [Lam89], a stack that leaves the invocation 
of all new, push and pop operations to the user is very 
different from — and infinitely preferable to — one that 
sometimes initiates a push or pop on its own initiative.

2.3 The Engineering Facet

The recognition of the two intersecting sets of 
phenomena suggests a systematic usage of those difficult 
terms: requirements, specifications, and programs.

Requirements are concerned solely with phenomena in 
the world: that is, with phenomena in the set PW.  Our 
customers want us to engineer effects in the world, not in 
the machine.  They want the seats profitably allocated, or 
the aeroplanes safely controlled, or the documents 
conveniently edited and neatly displayed and printed.  

Programs, by contrast, are concerned solely with the 
machine phenomena in the set PM.  Their purpose is to 
describe those properties and behaviours of the machine 
that will, ultimately, satisfy the customers.  

The gap between the two is bridged by specifications.  
Specifications are concerned solely with the shared phe-
nomena in PW∩PM.  A specification is both a requirement 
and program.  It is a requirement because it is concerned 
solely with phenomena of the world; and it is a program 
because it is concerned solely with phenomena of the ma-
chine.  Naturally, as one might expect, it is satisfactory 
neither as a requirement nor as a program.  It is unsatisfac-
tory as a requirement because it is too limited.  The cus-

tomer’s purposes are not confined to the coastline where 
the world meets the machine, but may range freely over 
any part of the world that is of interest.  And it is not 
satisfactory as a program because it may not be executable.  
Programs are descriptions of desired machines, but they 
must be descriptions of machines that our general-purpose 
computers can emulate and they must be cast in terms that 
our computers can interpret.

The specification link is necessary because a 
specification is a staging post on the hazardous journey 
from a requirement to a program.  Our engineering of the 
world is completely captured in our refinement of the 
requirement to a specification.  The transition from 
specification to program concerns only the machine.  The 
first part of the journey, from requirement to specification, 
can be illustrated by a little example.  A requirement in a 
certain avionics system is to ensure that reverse thrust can 
be engaged if, and only if, the plane is landing and already 
on the runway.  The requirement is:

REQ: can_rev ↔ on_runway
but only the can_rev phenomenon is shared with the 
machine.  It is necessary to find a way of connecting 
on_runway with the machine.  

Sensors fitted to the landing wheels generate pulses 
when the wheels are rotating.  The state pulsing is shared 
with the machine, although the state rotating is not.  So 
these phenomena are available to the engineer:

The developers decide that the following properties 
hold in the world:

WORLD1:  pulsing ↔ rotating
WORLD2:  rotating ↔ on_runway

That is, that the pulses are generated if, and only if, the 
wheels are rotating; and that the wheels are rotating if, and 
only if, the plane is landing and on the runway.  Relying 
on these properties they derive the specification:

SPEC:  can_rev ↔ pulsing
That is, reverse thrust can be engaged if, and only if, wheel 
pulses are being generated.  They prove their specification 
correct by showing that

WORLD1, WORLD2, SPEC f REQ
Unfortunately, property WORLD2 does not in fact hold in 
the world.  On one occasion a plane landed in heavy rain 
on a runway covered with water.  The wheels were aqua-
planing, not turning.  The pilot was prevented from engag-
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ing reverse thrust, and the plane ran off the end of the 
runway.

The solutions to many development problems — nota-
bly, but not only, embedded systems — involve not just en-
gineering in the world, but also engineering of the world.  
In this way, software development is like building bridges.  
The builder must study the geology and soil mechanics of 
the site, and the traffic both over and under the bridge.  
The engineering of the bridge is also engineering of its en-
vironment.  The engineer must understand the properties 
of the world and manipulate and exploit those properties to 
achieve the purposes of the system.  A computer system, 
like a bridge, can not be designed in isolation from the 
world into which it fits and in which it provides the solu-
tion to a problem.

2.4 The Problem Facet

The problems we aim to solve by introducing and 
using computer systems are often complex, and demand 
careful structuring and decomposition.  Because we hope 
to recognise some rationality in the problem our customer 
asks us to solve, we expect to be able to structure the 
problem convincingly and then to base the structure of the 
solution on the structure of the problem it solves.

But problem structures have proved elusive.  It is dis-
tressingly difficult to separate discourse about problems 
from discourse about solutions.  The distinction is some-
how related to the mysterious distinction between what and 
how, or the distinction between the specification and the 
implementation.

The difficulty arises from the relationship between the 
machine and the world.  The machine will furnish the so-
lution, but the problem is in the world.  Discourse about 
the problem must therefore be discourse about the world 
and about the requirement that our customer has in the 
world.  Since the world is very multifarious we should ex-
pect to find that there are many different kinds of problem.  
Controlling an elevator is not at all like compiling source 
programs, which in turn is not at all like switching tele-
phone calls; and none of them is like processing texts in a 
word processor.

Problems as varied as this can not be effectively struc-
tured by naïve approaches that rely on those two broken 
reeds: hierarchical structure and homogeneous decomposi-
tion.  As a general rule, neither the world nor the problems 
it offers exhibit hierarchical structure.  Problems usually 
exhibit a parallel structure, in which the key connective is 
the logical connective and.  Nor do they allow homogene-
ous decomposition.  It is certainly possible to devise effec-
tive programming environments in which homogeneity 
reigns: everything is a procedure, or everything is an ob-
ject, or everything is a sequential process or a recursive 
function or a list.  But the world, and its problems, are infi-

nitely more varied and will fit no such Procrustean bed.  

Effective problem decomposition means decomposing 
into problems that are recognised and known to be soluble.  
For example, the problem of constructing a simple CASE 
tool might be decomposed into these problems, each of a 
recognisable type:–
• A simple editing problem.  In an editing problem there 

is an inert and intangible object — such as a text —
belonging to the world but realised within the machine.  
The operator may request the machine to perform 
operations on the object, rather as a piece of metal might 
be worked on a machine tool such as a lathe.

• A GUI problem.  In a GUI problem there is a user who 
engages in an assisted dialogue with the machine.  The 
assistance is provided by displays of  options currently 
available and of information that  the user will find 
helpful when choosing an option.

• A simple information system problem.  In an informa-
tion system problem there is some reality about  which 
information is desired.  For the CASE tool,  this may be 
information about the progress of the  work.  Information 
requests are presented to the  machine, which embodies a 
model of the reality of interest and answers them from 
the model.

The decomposition is parallel, not hierarchical.  The 
different subproblems are concerned with different — but 
overlapping — subsets of the phenomena of the world.  For 
example, here are some phenomena relevant to the editing 
problem and the information system problem: 

The insert operation is relevant only to the editing 
problem; information about progress is of a coarser grain.  
Similarly, the log_on operation, the individual users, and 
the delete_doc’t operation are of interest only to the infor-
mation system problem.  The editing ignores any distinc-
tion between one user and another, and is not involved in 
log_on or delete_doc’t operations.  However, the 
save_doc’t and open_update operations and the individual 
documents, are relevant to both subproblems.

3 Four Kinds of Denial

If indeed software development is concerned both with 
the machine and with the world, as I have suggested, we 
might still ask whether the world outside the machine is 
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really our proper concern as software engineers.  Let an 
aeronautical engineer study the relationship between the 
landing gear and the runway.  Automobile engineers are 
not expected to be expert in route planning, or in human 
physiology.  Electrical power distribution engineers are not 
expected to know about demographic shifts and the TV 
schedules that affect patterns of consumption.  Why, then, 
should we as software engineers not confine our attention 
similarly to the machines that are our artifacts, and leave 
other people to analyse the world outside the machine and 
the problem, and to establish the customer’s requirements?

Rightly or wrongly, wisely or foolishly, we answered 
this question long ago.  We said that we would do it.  With 
help from domain experts, perhaps; and with qualifications 
and disclaimers to cover ourselves in case of disaster.  But 
as a community or as a profession we never said ‘Problem 
analysis not our responsibility.  We are mere builders of 
machines to given specifications.  We do not judge their 
fitness for any purpose.  Other people must supply the 
specification, and we will build the machine to meet it’.  

In this way we took on the responsibility of dealing 
with whatever part of the world furnished the context for 
each particular software development problem.  We under-
took to concern ourselves not only with the machine, but 
also with the purposes it is intended to serve.  That is why 
an important department of software engineering is 
requirements engineering: the elicitation, description, and 
analysis of the requirements that must be satisfied by the 
system being built.  What, exactly, does the customer 
demand?  What, exactly, is the problem?  What purposes 
must the system serve?  What functions must it provide?

But we are not at ease with our responsibility.  The re-
lationship between the machine and the world creates a 
conflict.  Most developers, for various reasons, are inclined 
to pay more attention to the machine than to the world.  
And they have found many ways to manifest and to justify 
their inclination, and to evade the responsibility that, as a 
community, we have implicitly undertaken.

3.1 Denial by Prior Knowledge

There is a legitimate kind of denial of the world.  In 
some engineering problems a domain analysis and require-
ments study is essential.  The bridge builder who neglected 
to survey the terrain and the local geology would be grossly 
negligent.  But for some problems a detailed and careful 
survey of the problem context, and even of the problem it-
self, is less important or even quite inappropriate.  A group 
of automobile engineers setting out to develop a five-door 
hatchback does not begin by asking questions about the 
purposes to which cars are put, or the physical constitution 
of the drivers and passengers, or the nature of road surfac-
es.  They do not ask themselves whether the car should be 
amphibious, or capable of carrying twenty-ton loads, or of 

travelling at supersonic speeds.  

The phrase ‘five-door hatchback car’ answers those 
questions implicitly: the requirements are already well-un-
derstood and standardised.  The design of the product to 
satisfy those requirements is also well-understood and 
standardised.  The designers need not consider such op-
tions as steam power, articulated legs or tracks instead of 
wheels, or having the driver sitting at the back facing side-
ways and steering by a tiller.  Over a period of a hundred 
years the customer’s needs and the automobile engineer’s 
products have grown into a symbiotic harmony.  There is 
no need for the machine’s designers to consider the world 
and the problem explicitly.  The world and the problem 
will be much as expected, and if the machine is also much 
as expected it will serve its purpose.  For a car designer, 
explicit attention to the world and the requirement would 
be ‘rethinking the motor car’.

This parallel standardisation of requirements and 
products is proceeding in many areas of software develop-
ment too.  Magazine reviews of shrink-wrapped word-
processors and spreadsheets and databases and graphics 
packages and compilers and accounting systems read more 
and more like magazine reviews of cars.  They apply 
standard criteria to measure the products against well-un-
derstood needs and against the competition.  If you can 
drive one word-processor you expect to be able to jump 
into any other word-processor and drive it the same way.  
This is not just standardisation of user interfaces: it is 
standardisation of problems and solutions.

As a problem class progresses towards this standard-
ised state, it becomes increasingly legitimate for the devel-
opers of solutions to ignore the world and concentrate on 
the details of their machine.  The world and the problem 
are already well understood, and the knowledge and under-
standing are embodied in the standard design from which 
they will derive their solution by an almost imperceptibly 
small perturbation.

3.2 Denial by Hacking

Sometimes the reasons for denying the importance of 
the world are more personal.  The phenomenon of hacking 
— not in the sense of breaking into other people’s systems 
but in the sense of obsessive devotion to interacting with 
computers — is well known.  It is not surprising, because 
computers are obsessively interesting things.  There are 
few other things in human life that put so much power into 
your hands, the opportunity to create a Golem and to enjoy 
immediately the pleasure of admiring the elaborate and in-
tricate functioning of your creation.  Who, faced with such 
opportunities, would want to waste time on problem state-
ments and domain descriptions and analyses?

The fascination is not confined to computer hackers.  
All people who work at creating physical artifacts do so 
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because they are in love with those artifacts.  Their crea-
tions give them a huge satisfaction with which little else 
can compare.  When Isambard Kingdom Brunel, the great 
builder of railways and steamships, was dying, he begged 
to be taken to see the new Royal Albert Bridge at Saltash, 
one of his most brilliant and noble creations.  He did not 
ask to be taken into his office to see the drawings.  He did 
not ask his assistant to remind him of the stress calcula-
tions, or to bring him his slide rule.  He wanted to see the 
bridge.

This fascination with the machine has a long history 
in software development.  We software developers have al-
ways offered our customers representations of the machine 
in place of the descriptions and analyses of their worlds 
and problems that they really needed.  We did so when we 
offered flowcharts and tape record layouts;we did so when 
we offered structured pseudocode; and we still do it today 
when we offer object models and data flow diagrams and Z 
schemas.

3.3 Denial by Abstraction

In the dimension we are considering here, formalists 
are closer to hackers than they may care to admit.  The 
machine can be seen as a Protean symbol-processing de-
vice, taking as many forms as we care to invent formal-
isms: the Universal Turing Machine can mimic any Turing 
Machine, including another Universal Turing Machine.  
So the machine, viewed abstractly and mathematically, is 
an inexhaustible source of mathematical delight, and un-
derstandably so.  There is no need to be concerned with the 
world.  Our product is computations, and computations are 
mathematical objects.

But mathematics is no more the essence of software 
development than it is of bridge building.  Hermann Weyl, 
quoted by Abelson and Sussman [Abel85], wrote:
  “We now come to the decisive step of mathematical 
    abstraction: we forget about what the symbols stand 
    for.  … [The mathematician] need not be idle; there 
    are many operations he may carry out with these 
    symbols, without ever having to look at the things 
    they stand for.”

As an expression of one important intellectual strategy 
this is admirable.  As a rule of life for a software developer 
it is catastrophic.  The software developer should some-
times forget what the symbols stand for, but only occasion-
ally, and then only briefly.  The world and its problems are 
rich and informal, and large mathematical abstractions 
rarely capture the important concerns.  

Unfortunately, much writing and teaching on the sub-
ject of software development inculcates a disdain for the 
inconveniently messy real world.   Courses and books need 
small problems that provide neatly circumscribed class ex-
ercises.  If you see software development as a discipline of 

mathematical calculi and symbol manipulation, you will 
naturally seek out problems with a clean and easy formula-
tion, purged of inconvenient informality.  

So students of software development learn implicitly 
that typical programming problems are GCD, Eight 
Queens, Towers of Hanoi, and other traditional pearls.  It’s 
impossible not to be reminded of the tale of the prison 
visitor.  The visitor, taking lunch with the prisoners, was 
surprised to hear one of them shout out ‘Joke Number 43’.  
Everyone laughed.  A little later another called out ‘Joke 
Number 16’ and everyone laughed again.  They had 
reduced their jokes, by long repetition, to a standard reper-
toire that could be evoked by merely mentioning their 
numbers.  GCD is simply Joke Number 1.

The implicit lesson is powerful, and harmful.  It is that 
software development problems can be captured in a few 
words, and that all the difficulty lies in devising a solution.  
The problem itself, and therefore its context, merit no seri-
ous attention.  The student learns to be impatient of the 
world in which the problem is found, hurrying through the 
tedious business of eliciting the problem from those stupid 
and mathematically uneducated people known as users and 
customers, so that the real work, the enjoyable work, of 
software design and programming can begin.

Martin Gardner, in one of his books of puzzles, gives 
an example of a kind of puzzle everyone knows well.  A 
traveller is in a distant land where there are two kinds of 
people: one always lies and the other always tells the truth.  
The traveller meets two people, and asks one ‘Are you a 
truthteller?’  The reply is ‘goom’.  The other person says 
‘He said Yes, but he is lying’.  The traveller must decide: 
Is the first person a truthteller?  

Gardner reports that one reader produced an unusual 
solution.  The first person clearly does not speak English, 
and must have said something like ‘Sorry, I don’t under-
stand’.  Therefore the second person is a liar.  Therefore 
the first person is a truthteller.  The reader who produced 
this solution had clearly not taken a course in logic.  She 
failed to make the standard abstraction.  She failed to rec-
ognise that this is Problem Number 87.  But if I did go to 
that distant land I would feel safer with her as a compan-
ion.

3.4 Denial by Vagueness

There is another subtle, and widely practised, way of 
avoiding the task of describing and understanding the 
world.  Write descriptions of the machine but imply vague-
ly that they are actually descriptions of the world.  Readers 
may be sufficiently confused not to notice.  This technique 
is practised both developers of every stamp.  Almost every 
book about a structured or object-oriented development 
method promises to ‘analyse the problem’ or to ‘describe 
the real world’, and immediately offers a description of the 
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internal workings of the machine.  Formalists do the same.  
Look at this extract from the preamble to a Z specification 
example:

“… the Z approach is to construct a specification 
  document which consists of a judicious mix of informal 
  prose with precise mathematical statements.  … the in
  formal text … can be consulted to find out what aspects 
  of the real world are being described … .  The formal 
  text on the other hand provides the precise definition of 
  the system and hence can be used to resolve any 
  ambiguities present in the informal text.”

The book is a fine book; the example specification is a fine 
specification.  But evidently the writer is quite unsure 
whether the document describes the ‘real world’ or the 
‘system’ — that is, the machine.  

This vagueness is possible for a number of reasons.  
The most cogent is the modelling facet of the relationship 
between the machine and the world.  If the machine em-
bodies a model of the world, then surely one description 
will do for both.  But of course it won't, as we have already 
seen.  There is plenty to say about the world that can not be 
said of the machine, and plenty to say about the machine 
that can not be said of the world. 

(Sadly, there was a moment when an understanding of 
modelling was nearly captured and disseminated to the 
software development community, but the opportunity was 
missed and the butterfly escaped the net.  The Codasyl 
committee on database systems recognised thirty years ago 
that the implementation details of a database did not re-
flect anything in the world being modelled.  Two descrip-
tions, at least, were necessary.  The committee could have 
called them the machine schema and the world schema, 
and so written their names in the golden book of those who 
benefited the human race.  Instead, alas, they called them 
the physical schema and the conceptual schema.  What a 
mistake.  What a shame.)

Further, modelling is a less ubiquitous facet of the re-
lationship than many developers seem to suppose.  It is 
only in information systems that modelling — in the sense 
I am using it — is a central concern.  Much of what we do 
does not involve modelling at all.  For example, the avion-
ics system needs no model of the world properties that con-
nect the wheel pulses, the wheel rotation, and the plane’s 
position in relation to the runway.  It needs a careful exam-
ination and description of those properties; and their de-
scription may play a role in the reasoning that justifies the 
eventual specification and implementation of the software.  
But there will be no part of the machine that simulates 
those properties.  Not everything in software development 
is modelling in this sense.

4 Four Principles for Description

Traditionally, I am claiming, we pay too little atten- 

tion to the world in which our problems are found.  In soft-
ware development, paying attention to a subject must mean 
describing it carefully and precisely, for description is the 
medium in which software developers fashion their work.

But describing the world is difficult, and our 
reluctance to pay it due attention is easy to understand.  
Four principles are suggested here that can help us to avoid 
some of the difficulties I have mentioned.  They are:

• von Neumann’s principle;
• the principle of reductionism;
• the Shanley principle; and
• Montaigne’s principle.

4.1 von Neumann’s Principle

In The Theory of Games [vonN44], John von Neu-
mann and Oskar Morgenstern wrote:

“There is no point in using exact methods where
there is no clarity in the concepts and issues to 
which they are to be applied.”  

Our very first obligation is to clarify the concepts and is-
sues with which a system is concerned.

This means that we must begin by establishing the vo-
cabulary of ground terms that we will use in talking about 
the world and the machine.  We must identify the phenom-
ena of interest, give a rule by which each kind of 
phenomenon can be reliably recognised, and give the 
formal term by which we will refer to it in our 
descriptions.  If we want to assert that:

For each novel x there is a unique writer y 
that is the author of the novel.

then we had better say, and say precisely, what we mean by 
‘x is a novel’, what we mean by ‘y is a writer’, and what 
we mean by ‘y is the author of x’.  This is not an easy task, 
because in essence it is the task of formalising a part of the 
intransigently informal world.  For each term we must give 
a — necessarily informal — recognition rule by which the 
phenomenon we are referring to can be recognised in the 
world.  And we must also give the formal term — for ex-
ample, a predicate symbol and formal argument list — by 
which we will refer to it in our descriptions.  The recogni- 
tion rule and formal term together constitute a designation.

The task is possible only because it is bounded in two 
ways.  The first bound limits our subject area: we are not 
obliged to formalise the whole world, even the whole of 
those parts of the world in which books and writers are to 
be found.  We are concerned, perhaps, only with English 
novels of the nineteenth century, and only with those that 
were published and offered for sale to the public.

The second bound limits the requirements of the sys-
tem we are building, and so limits the aspects of our al-
ready bounded subject area that will concern us.  One 
system will be concerned with the literary aspects; another 
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with the commercial relationships between authors and 
publishers; another with the social effects of the novels and 
the distribution of their readers among social classes and 
geographic areas; another with the technology of book pro-
duction.  There is no bound to the number of such aspects 
that might be of interest, but only one or two can be of in-
terest in a particular system.  It is not possible to have a 
system about ‘absolutely everything to do with English 
novels of the nineteenth century’. That is why the efforts to 
create enterprise models have failed.  They were systems 
about ‘absolutely everything to do with the ABC 
Company’.

By writing explicit designations and defining our 
ground terms precisely we give meaning to our descrip-
tions in the most important sense.  Formal semantics gives 
meaning only in a formal sense: the abstract formal text is 
explained in terms of the abstract semantic domain.  We 
give practical meaning to our descriptions by grounding 
the formal text also in terms of the informal reality in the 
world that it describes.  Explicit designations make our de-
scriptions refutable, and deprive us of the evasion of say-
ing ‘Well, it all depends on what you mean by novel and 
what you mean by writer’.  Without this grounding, formal 
precision has no place to stand and can not move the 
world.

In a crisper conversational version of his principle, 
von Neumann said more simply: 

“There is no sense in being precise when you don’t know 
  what you are talking about.” 

4.2 The Principle of Reductionism

Because we are talking about phenomena, about what 
appears to us to exist or to be the case, we often have con-
siderable freedom to choose our ground terms.  We should 
always choose those phenomena for which we can give the 
most exact and reliable recognition rules.  Often this will 
involve applying a reductionist principle, choosing the 
simplest possible phenomena and — where appropriate — 
defining more elaborate constructs in terms of them.

One error to be avoided at all costs is the unthinking 
adoption of English language nouns as denoting entity 
classes or set-membership predicates.  In a library admin-
istration system it seems obviously right to choose member 
as a ground term; in a telephone switching system to 
choose call; in a meeting scheduling system to choose 
meeting; in an airline reservation system to choose flight.  
But almost certainly these choices are serious errors.

In the library system, being a member is a state of an 
individual who has enrolled in the library and has not yet 
resigned or lapsed or been expelled.  The events enrol, 
resign, lapse, and expel are probably appropriate ground 
terms — that is, designated phenomena.  By contrast, 
member is not a ground term: it should be defined in terms 

of the events.  The definition of member is not, of course, a 
refutable description.  It says nothing about the world of 
the library, but is merely a statement about how the term 
will be used in descriptions.  Any assertion containing the 
term member can be translated into an equivalent assertion 
about the defining events. 

Telephone calls, scheduled meetings, and airline 
flights are even less appropriate as ground terms than li-
brary members.  It is impossible to write reliable recogni-
tion rules for them.  What, exactly, is a telephone call in a 
world where there are chat lines, conference calls, and call 
forwarding?  Suppose that A calls B, and the call is for-
warded to C.  C then links in D using the conference fea-
ture, and, after a while, C drops out, leaving A talking to 
D.  How many calls is that?  Airline flights may be amal-
gamated, so that the person sitting in the seat next to you is 
on a different flight; and they may be split, so that one 
flight involves changing planes and sometimes even air-
lines.  Whatever recognition rule you write will be inade-
quate to your purpose.

The ground terms you should be concerned with are, 
as often happens, events.  Picking up a telephone handset, 
replacing it, dialling a digit, starting to receive a busy tone 
— all these are readily recognisable phenomena.  So too 
are take-off and landing events in the life of an aeroplane, 
and boarding and disembarking events in the life of a pas-
senger.  These should be your ground terms.  If you can re-
construct calls and flights by definitions using these 
ground terms, well and good.  If not, you would only have 
been deceiving and confusing yourself and your customer 
by trying to treat them as ground terms directly.

4.3 Shanley’s Principle

Twenty years ago, in a famous paper on Structured 
Programming with go to statements [Knuth74], Knuth 
quoted Pierre Arnoul de Marneffe [deMar73]:

“... If you make a cross-section of, for instance, the 
German V-2 [rocket], you find external skin, 
structural rods, tank wall, etc.  If you cut across the 
Saturn-B moon rocket, you find only an external skin 
which is at the same time a structural component and 
the tank wall.  Rocketry engineers have used the 
‘Shanley Principle’ thoroughly when they use the fuel 
pressure inside the tank to improve the rigidity of the 
external skin!”

de Marneffe cited the Shanley principle as a rule for 
efficient design.  Barry Boehm has pointed out that it has 
disadvantages: it leads to designs with a single point of 
failure.  And one could argue that the Shanley Principle is 
the direct negation of the separation of concerns.  The 
thrust of much of the advance in programming languages 
and operating systems, certainly, has been towards separa-
tion of functions rather than their amalgamation.  An op-

                                                                                                             8

icse17kc.wsd



erating system that can execute and synchronise many con-
current processes relieves the programmer of the task of 
composing them into a single sequential process.

But we are concerned here not with the design of our 
machines but with the design of the world.  We must rec-
ognise that the architecture of the world has been designed 
with the fullest possible application of the Shanley Princi-
ple.  A new book [Gam94] on patterns in object-orientation 
ends with a provocative quotation from the software devel-
oper's favourite architect, Christopher Alexander [Alex79]:

“It is possible to make buildings by stringing together 
  patterns, in a rather loose way.  A building made like 
  this is an assembly of patterns.  It is not dense.  It is not 
  profound.  But it is also possible to put patterns 
  together in such a way that many patterns overlap in 
  the same  physical space: the building is very dense; it 
  has many meanings captured in a small space; and 
  through this density it becomes profound.”

The world is profound, in Alexander’s sense.  And the pro-
fundity reaches down to the elementary individuals.  Every 
part of the world may play many roles, and perform many 
functions.  Every individual may be an individual of many 
distinct domains; every node may be a node in many 
graphs; every element may be an element in many sets; 
every event an event in many traces.

This versatility and many-sidedness, both of larger 
structures and of elementary individuals, must be reflected 
in an appropriate approach to describing and understand-
ing the world.  At the level of domain description and 
problem analysis it demands parallel structuring of views 
and problems.  The parallel decomposition of a colour pic-
ture into Cyan, Magenta, Yellow and Black colour separa-
tions is a far better metaphor for structuring than the 
hierarchical  bill of materials assembly structures that have 
been the staple fare of elementary problem solving for far 
too long.  The invention of the subroutine was not an un-
mixed blessing.

At the elementary level we must recognise similarly 
that the world is not strongly typed.  It is always possible 
to devise a very restricted view of the world in which ele-
mentary individuals can be classified into disjoint sets and 
strongly typed.  But such a view is always far too restricted 
to capture a problem of serious interest, and many such 
views must be adopted simultaneously.  The elementary in-
dividuals in one view then appear, differently classified 
and differently typed, in other views.  The need for multi-
ple viewpoints is felt at the elementary level too.

4.4 Montaigne’s Principle

The great sixteenth-century French essayist Montaigne 
wrote: ‘The greater part of this world’s troubles are due to 
questions of grammar.’  Perhaps there is a degree of exag-
geration here, but there is at least one question of grammar 

that is of the greatest importance for software developers.  
That is the distinction between the indicative mood and the 
optative mood.  The indicative mood expresses what we 
assert to be true; the optative mood expresses what we de- 
sire to be true.  

For the developers of the system to control reverse 
thrust the statement:

REQ: can_rev ↔ on_runway
is in the optative mood.  It expresses what they desire to be 
true, the effect that their system is to bring about in the 
world.  But the statement:

WORLD1:  pulsing ↔ rotating
is in the indicative mood.  It expresses what they assert to 
be true of the world, regardless of the behaviour of the sys-
tem they are building.

The distinction is important and must be clearly made 
in the descriptions we write in a development.  In recogni-
tion of this need, a rather confused formulation is some-
times demanded of US Government contractors:

“Absolute tense ‘shall’: a binding, measurable 
  requirement … observable when a system is delivered 
  … in terms of an … output.
“Future tense ‘will’: a reference to the future, … 
  describing something … not under control of the 
  system being specified.
“Present tense: for all other verbs … in all other cases.”

Part of the confusion is in the grammar.  Tenses are not 
moods.  And I remember learning at school that:

“I shall drown.  No-one will save me”
is a desperate cry for help, while:

“I will drown.  No-one shall save me”
is the proud proclamation of a determined suicide. 

Natural English usage is not easily tamed, and it is a 
bad idea to rely on the vagaries of English verb forms to 
capture crucial distinctions in technical documents.  

A better approach is to avoid grammatical distinctions 
of mood within a single description, and to indicate the 
mood of a description by its place in the whole develop-
ment structure.  One virtue of this approach is that the 
mood of a description is, in fact, relative.  The require-
ment, the properties with which we want our system to 
endue the world, is in the optative mood.  But when the 
system is successfully installed and operating, the requir-
ement becomes a reality; what we desired to be true be-
comes true; and the optative becomes indicative.  So mood 
is relative to the progress of the development.  

It is also relative to problem decomposition.  In the ed-
iting subproblem in the CASE tool, correct performance of 
the requested operations on the edited texts is a require-
ment, in the optative mood.  In the information system 
subproblem, we assume that the editing subproblem has 
been solved.  Correct performance of the requested opera-
tions then becomes indicative: it is regarded as a given 
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truth about the world.  

One penalty for ignoring the distinction between in-
dicative and optative is the confusion often felt by readers 
of formal specifications.  Some formal specifications ab-
stract from the distinction between the different moods.  
The formal specification is a homogeneous description of 
the behaviour of the correctly implemented machine inter-
acting with the world.  Behavioural properties attributable 
to indicative truths about the world are not distinguished 
from properties attributable to the satisfaction by the ma-
chine of the customer’s optative requirements.  A predicate 
P is given as the precondition on an operation O, but we 
are not told whether:

• the machine will inhibit O if P does not hold; or 
• the world ought to refrain from invoking O when P

does not hold; or 
• the world is known never to invoke O when P does not

hold.

Abstraction from the indicative/optative distinction 
may be useful for a number of purposes.  But it is painfully 
confusing and frustrating to the reader who wants to draw 
any practical inference whatsoever from the specification.  

5 Envoi

Some of what I have said may imply a hostility to for-
malism and to mathematical approaches.  Nothing could 
be further from the truth.  We need to make descriptions 
that are clear and precise, and we need to reason about 
them.  And clarity, precision and reasoning are the busi-
ness of mathematics.  

Mathematics is the Queen, and the Servant, of the sci-
ences.  It has served physics and engineering well.  It can 
serve software development well, too, if we make sure that 
we know what we are talking about.
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