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THE BIGGER PICTURE Datasets form the basis for training, evaluating, and benchmarking machine learning
models and have played a foundational role in the advancement of the field. Furthermore, the ways in which
we collect, construct, and share these datasets inform the kinds of problems the field pursues and the
methods explored in algorithm development. In this work, we survey recent issues pertaining to data in ma-
chine learning research, focusing primarily on work in computer vision and natural language processing. We
summarize concerns relating to the design, collection, maintenance, distribution, and use of machine
learning datasets as well as broader disciplinary norms and cultures that pervade the field. We advocate a
turn in the culture toward more careful practices of development, maintenance, and distribution of datasets
that are attentive to limitations and societal impact while respecting the intellectual property and privacy
rights of data creators and data subjects.
SUMMARY

In this work, we survey a breadth of literature that has revealed the limitations of predominant practices
for dataset collection and use in the field of machine learning. We cover studies that critically review the
design and development of datasets with a focus on negative societal impacts and poor outcomes for
system performance. We also cover approaches to filtering and augmenting data and modeling tech-
niques aimed at mitigating the impact of bias in datasets. Finally, we discuss works that have studied
data practices, cultures, and disciplinary norms and discuss implications for the legal, ethical, and func-
tional challenges the field continues to face. Based on these findings, we advocate for the use of both
qualitative and quantitative approaches to more carefully document and analyze datasets during the cre-
ation and usage phases.
INTRODUCTION

The importance of datasets for machine learning research

cannot be overstated. Datasets have been seen as the limiting

factor for algorithmic development and scientific progress,1,2

and a select few benchmark datasets, such as the ImageNet

benchmark for visual object recognition3 and the GLUE bench-

mark for English textual understanding,4 have been the founda-

tion for some of the most significant developments in the field.

Benchmark datasets have also played a critical role in orienting

the goals, values, and research agendas of the machine learning

community.5 In recent years, machine learning systems have

been reported to achieve ‘‘super-human’’ performance when

evaluated on such benchmark datasets. However, recent work

from a variety of perspectives has surfaced not only the short-

comings of some machine learning datasets as meaningful tests
This is an open access article und
of human-like reasoning ability, but also the troubling realities of

the societal impact of how these datasets are developed and

used. Together, these insights reveal how this apparent progress

may rest on faulty foundations.

As the machine learning field turned to approaches with

larger data requirements in the last decade, the sort of skilled

and methodical annotation applied in dataset collection prac-

tices in earlier eras was spurned as ‘‘slow and expensive to ac-

quire,’’ and a turn toward unfettered collection of increasingly

large amounts of data from the web, alongside increased reli-

ance on crowdworkers, was seen as a boon to machine

learning.1,3,6,7 The enormous scale of such datasets has been

mythologized as beneficial to the perceived generality of

trained systems,7 but they continue to be impacted by the lim-

itations and biases that impact all datasets.8 In particular, pre-

vailing data practices tend to abstract away the human labor,
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Figure 1. Key takeaways from a survey of
perspectives on the challenges posed by
recent trends in dataset use in machine
learning
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subjective judgments and biases, and contingent contexts

involved in dataset production. However, such details are

important for assessing whether and how a dataset might be

useful for a particular application, for enabling more rigorous

error analysis, and for acknowledging the significant difficulty

required in constructing useful datasets.

The machine learning field has placed large-scale datasets at

the center of model development and evaluation. As systems

trained in this way are deployed in real-world contexts that affect

the lives and livelihoods of real people, it is essential that re-

searchers, advocacy groups, and the public at large understand

both the contents of the datasets and how they affect system

performance. In particular, as the field has focused on bench-

marks as the primary tool for both measuring and driving

research progress,9 understanding what these benchmarks

measure (and how well) becomes increasingly urgent.

We thus conduct a survey of the literature of recent issues

pertaining to data in machine learning research, with a partic-

ular focus on work in computer vision and natural language

processing (NLP). We structure our survey around three

themes. The first, Dataset design and development, deals

with studies that critically review the design of the datasets

used as benchmarks. This includes studies that audit existing

datasets for bias, those that examine existing datasets for

spurious correlations which make the benchmarks gameable,

those that critically analyze the framing of tasks , and work

promoting better data collection and documentation prac-

tices. Next, in Dataset in(tro)spection, we review approaches

to exploring and improving these aspects of datasets. In look-

ing at approaches to filtering and augmenting data and

modeling techniques aimed at mitigating the impact of bias

in datasets, we see further critiques of the current state of da-
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tasets. However, we find that these ap-

proaches do not fully address the

broader issues with data use. Finally, in

Dataset culture, we survey work on

dataset practices as a whole, including

critiques of their use as performance tar-

gets, perspectives on data management

and reuse, research into the precarious

labor conditions that underpin much of

dataset production, and papers raising

legal issues pertaining to data collection

and distribution . The key findings of

the sections which form the body of the

paper are summarized in Figure 1.

DEFINITIONS

We follow Schlangen9 in distinguishing be-

tween benchmarks, tasks, capabilities, and

datasets. While his work focused on NLP,

we broaden these definitions to include as-
pects of other machine learning applications. In this context, a

task is constituted of an input space and output space and an ex-

pected mapping between them. Schlangen notes that there are

typically both intensional and extensional definitions of tasks. An

intensional definition describes the relationship between input

and output (e.g., the output in automatic speech recognition is

a transcription of the audio signal in the input), where an

extensional definition is simply the set of input-output pairs in

the dataset. Thus tasks are exemplified by datasets, i.e., sets

of input-output pairs that conform, if valid, to the intensional defi-

nition of the task. Tasks can be of interest for two (not mutually

exclusive) reasons: either they map directly to a use case (e.g.,

automatic transcription of audio data) or they illustrate cognitive

capabilities, typical of humans, that we are attempting to pro-

gram into machines. In the former case, a task is suitable as a

benchmark (for comparing competing systems to each other) if

the task is well-aligned with its real-world use case and the data-

set is sufficiently representative of the data the systems would

encounter in production. In the latter case, establishing the value

of the task as a benchmark is more involved: as Schlangen ar-

gues, success on the task has to be shown to rely on having

some set of capabilities that are definable outside of the task it-

self and transferable to other tasks.

In referring to dataset exemplars that pair instances (input) and

labels (output), we follow a convention from machine learning of

referring to the latter as target labels, which are those labels that

are used as the learning target, and which have typically been

produced by human annotators or, in some cases, automated la-

beling heuristics. These are also often referred to in the literature

as ‘‘gold standard’’ or ‘‘ground truth’’ labels, but we wish to

emphasize their role as training targets that are neither objective

nor necessarily representative of reality.
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DATASET DESIGN AND DEVELOPMENT
‘‘Raw data is both an oxymoron and a bad idea; to the

contrary, data should be cooked with care.’’—Geoffrey

Bowker (Memory Practices in the Sciences)10

In this section, we review papers that explore issues with the

contents of datasets that arise due to the manner in which they

were collected, the assumptions guiding the dataset construc-

tion process, and the set of questions guiding their development.

Representational harms in datasets
In recent years there has been growing concern regarding the

degree and manner of representation of different sociodemo-

graphic groups within prominent machine learning datasets,

constituting what Kate Crawford has called representational

harms.11 For example, a glaring under-representation of

darker-skinned subjects, compared with lighter-skinned sub-

jects, has been identified within prominent facial analysis data-

sets6,12 and in image datasets used to train self-driving cars to

detect pedestrians.13 Meanwhile, the images in object recogni-

tion datasets have been overwhelmingly sourced from Western

countries.14 Zhao et al.15 found a stark under-representation of

female pronouns in the commonly used OntoNotes dataset for

English coreference resolution; similarly, Lennon16 found that

feminine-coded names were vastly underrepresented in the

CoNLL-2003 dataset used for named entity recognition. While

the under-representation of marginalized groups in datasets

has been met with calls for ‘‘inclusion,’’ Hoffmann17 provides a

case for skepticism of this narrative, as it has the potential to

merely uphold the very sort of power hierarchy that engenders

such under-representation in the first place.

Stereotype-aligned correlations have also been identified in

both computer vision and NLP datasets. For example, word

co-occurrences in NLP datasets frequently reflect social biases

and stereotypes relating to race, gender, (dis)ability, and

more18,19 and correlations between gender and activities de-

picted in computer vision datasets have been shown to reflect

common gender stereotypes.20–22 Dixon et al.23 found that a da-

taset for toxicity classification contained a disproportionate as-

sociation between words describing queer identities and text

labeled as ‘‘toxic,’’ while Park et al.24 found evidence of gender

bias against women in similar datasets. Such disparities in rep-

resentation stem, in part, from the fact that particular, non-

neutral viewpoints are routinely yet implicitly invoked in the

design of tasks and labeling heuristics. For example, a survey

of literature on computer vision systems for detecting pornog-

raphy found that the task is largely framed around detecting

the features of thin, nude, female-presenting bodies with little

body hair, largely to the exclusion of other kinds of bodies—

thereby implicitly assuming a relatively narrow and conservative

view of pornography that happens to align with a straight male

gaze.25

In an examination of the person categories within the Image-

Net dataset,3 Crawford and Paglen26 uncovered millions of im-

ages of people that had been labeled with offensive categories,

including racial slurs and derogatory phrases. In a similar vein,

Birhane and Prabhu27 examined a broader swath of image clas-

sification datasets that were constructed using the same cate-
gorical schema as ImageNet, finding a range of harmful and

problematic representations, including non-consensual and

pornographic imagery of women. In response to the work of

Crawford and Paglen,26 a large portion of the ImageNet dataset

has been removed.28 Similarly, Birhane and Prabhu’s examina-

tion27 prompted the complete removal of the TinyImages

dataset.29

Spurious cues exploited by machine learning models
While deep learning models have seemed to achieve remarkable

performance on challenging tasks in artificial intelligence, recent

work has illustrated how these performance gains may be due

largely to ‘‘cheap tricks’’ (to borrow a term from Levesque30)

rather than human-like reasoning capabilities, as defined in Def-

initions. Geirhos et al.31 illustrate how the performance of deep

neural networks can rely on shortcuts, or decision rules that do

not extrapolate well to out-of-distribution data and are often

based on incidental associations. Oftentimes, these shortcuts

arise due to artifacts in datasets that allow models to overfit to

training data and to rely on nonsensical heuristics to ‘‘solve’’

the task—for example, detecting the presence of pneumonia in

chest X-ray scans based on hospital-specific tokens that appear

in the images.31 That is, despite high predictive performance,

models are not performing the task according to its intensional

description, and thus the datasets may not be exemplary of

reasoning capabilities. Recent work has revealed the presence

of shortcuts in commonly used datasets that had been

conceived of as proving grounds for particular competencies,

such as reading comprehension and other ‘‘language under-

standing’’ capabilities. Experiments that illuminate such data ar-

tifacts, or ‘‘dataset ablations’’ as Heinzerling32 calls them,

involve simple or nonsensical baselines, such as training models

on incomplete inputs and comparing performance to models

trained on full inputs. Much recent work in NLP has revealed

how these simple baselines are competitive, and that models

trained on incomplete inputs for argument reasoning, natural

language inference, fact verification, and reading comprehen-

sion—i.e., tasks restructured in such a way that there should

be no information about the correct output in the input—perform

quite well.33–37 (Storks et al.38 and Schlegel et al.39 provide more

comprehensive reviews of datasets and dataset ablations for

natural language inference.) In many cases, this work has re-

vealed how an over-representation of simple linguistic patterns

(such as negation or presence of certain words) in dataset in-

stances belonging to one label class can serve as a spurious

signal for models to pick up on. Many of these issues result

from the assumptions made in task design and in the under-

specification of instructions given to human data labelers, and

can thus can be addressed by rethinking the format that dataset

collection takes. In light of this, recent work has proposed ap-

proaches to pre-empting spurious correlations by designing

annotation frameworks that better leverage human ‘‘common

sense’’40 and more critical approaches to dataset creation and

use for tasks such as reading comprehension.41

How do datasets legitimize certain problems or goals?
As the previous sections have laid out, the mapping between in-

puts and target labels contained in datasets is not always a

meaningful one, and the ways in which data are collected and
Patterns 2, November 12, 2021 3
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tasks are structured can lead models to rely on faulty heuristics

for making predictions. The problems this raises are not limited

to misleading conclusions based on benchmarking studies:

when machine learning models can leverage spurious cues to

make predictions well enough to beat a baseline on the test

data, the resulting systems can appear to legitimize spurious

tasks that do not map to real-world capabilities. More formally,

there are some tasks that can be described intensionally but

for which there is no possibility of a sufficient extensional realiza-

tion, often because the underlying theory for the task is unsound.

Decisions about what data to collect in the first place and the

problematization that guides data collection lead to the creation

of datasets that formulate pseudoscientific tasks. For example,

several studies in recent years that attempt to predict attributes

such as sexuality and other fluid, subjective personal traits from

photos of human faces presuppose that these predictions are

possible and worthwhile to make. However, these datasets,

like those discussed above, enable a reliance on meaningless

shortcuts. These in turn support the apparent ‘‘learnability’’ of

the personal traits in question. An audit by Ag€uera y Arcas

et al.42 found that a model trained to predict sexual orientation

from images of faces harvested from online dating profiles was

actually learning to spot stereotypical choices in grooming and

self-expression, which are by no means universal, while Gelman

et al. discuss how such a study strips away context and implies

the existence of an ‘‘essential homosexual nature’’.43 The task

rests on a pseudoscientific essentialism of human traits. Another

example, from NLP, is GermEval 2020 Task 1,44 which asked

systems to reproduce a ranking of students by IQ scores and

grades using only German short answer texts produced by the

students as input. By setting up this task as feasible (for machine

models or otherwise), the task organizers suggested that short

answer texts contain sufficient information to ‘‘predict’’ IQ

scores and furthermore that IQ scores are a valid and relevant

thing to measure about a person.45 Jacobsen et al.46 point out

that shortcuts in deep learning, as described in Section 3.2,

make ethically dubious questions seem answerable, and advise,

‘‘[W]hen assessing whether a task is solvable, we first need to

ask: should it be solved? And if so, should it be solved by AI?’’

Not only are these task formulations problematic, but, as we

describe in Section 5.3, once sensitive data has been collected,

it can be misused.

Collection, annotation, and documentation practices
A host of concerns regarding the practices of dataset collection,

annotation, and documentation have been raised within recent

years. In combination, these concerns reflect what Jo and Ge-

bru47 describe as a laissez-faire attitude regarding dataset

development and the pervasive undervaluation of data work.48

Rather than collecting and curating datasets with care and inten-

tionality—as is more typical in other data-centric disciplines—

machine learning practitioners often adopt an approach where

anything goes. As one data scientist put it, ‘‘if it is available to

us, we ingest it.’’49

The common practices of scraping data from internet search

engines, social media platforms, and other publicly available on-

line sources faced significant backlash in recent years. For

example, facial analysis datasets have received push-back

due to the inclusion of personal Flickr photos without data sub-
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jects’ knowledge.50 Inmany instances, the legality of the data us-

age has come into question, as we discuss further in Legal per-

spectives.

Dataset annotation practices have also come under great

scrutiny in recent years. Much of this has focused on how sub-

jective values, judgments, and biases of annotators contribute

to undesirable or unintended dataset bias.22,51–54 More gener-

ally, several researchers have identified a widespread failure to

recognize annotation work as interpretive work, which in turn

can result in a conflation of target labels in a collected dataset

and real-world objects, for which there may be no single ground

truth label.55,56 As discussed further in Labor, data annotation

tasks are often mediated through crowdwork platforms such

as Amazon Mechanical Turk (AMT). These platforms, by design,

position annotators as interchangeable workers, rather than indi-

viduals who bring to bear their own subjective experiences and

interpretations to the task. Divergences in judgments across

different annotator pools,57 as well as between AMT annotators

and other communities,58 have been empirically explored.

Recent work by Tsipras et al.59 has revealed that the annota-

tion pipeline for ImageNet does not reflect the intention of its

development for the purpose of object recognition in images.

They note that ImageNet, constructed with the constraint of a

single label per image, had its labels largely determined by

crowdworkers indicating the visual presence of that object in

the image. This has led to issues with how labels are applied,

particularly to imageswithmultiple objects, where the class of in-

terest could include a background or obscured object that would

be an unsuitable result for the image classification task of that

particular photo. Furthermore, the nature of image retrieval for

the annotation tasks biases the crowdworkers’ response to the

labeling prompt, making them much less effective at filtering

out unsuitable examples for a class category. This is just one

of several inconsistencies and biases in the data that hints at

larger annotation patterns that mischaracterize the real-world

tasks these datasets are meant to represent, and the broader

impact of data curation design choices in determining the quality

of the final dataset.

Dataset documentation practices have also been a central

focus, especially as dataset development processes are

increasingly being recognized as a source of algorithmic unfair-

ness. A recent study of publications that leverage Twitter data

found data decisions were heavily under-specified and inconsis-

tent across publications.60 Scheuerman et al.61 found a wide-

spread under-specification of annotation processes relating to

gender and racial categories within facial analysis datasets.

Several dataset documentation and development frameworks

have been proposed in an effort to address these concerns,

with certain frameworks looking to not just capture characteris-

tics of the output dataset but also report details of the procedure

of dataset creation for better transparency and account-

ability.62–66

The lack of rigorous and standardized dataset documentation

practices has contributed to reproducibility concerns. For

example, recent work by Recht et al.67 undertook the laborious

task of reconstructing ImageNet, following the original docu-

mented dataset construction process in an effort to test the

generalization capabilities of ImageNet classifiers. Despite mir-

roring the original collection and annotation methods—including
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leveraging images from the same time period—the newly

constructed dataset was found to have different distributional

properties. The differences were largely localized to variations

in constructing target labels from multiple annotations. More

specifically, different thresholds for inter-annotator agreement

were found to produce vastly different datasets, indicating that

so-called ground truth labels in datasets do not correspond

to truth.

Summary
This section has centered on issues with dataset contents and

structures, and the representational harms, spurious correla-

tions, problem legitimization, and haphazard collection, annota-

tion, and documentation practices that are endemic tomanyma-

chine learning datasets. In the next section, we review methods

which have been developed to address some of these issues.

DATASET IN(TRO)SPECTION
‘‘For any sociotechnical system, ask, ‘what is being

looked at, what good comes from seeing it, and what

are we not able to see?’’’—Mike Ananny and Kate Craw-

ford (Seeing without knowing: Limitations of the transpar-

ency ideal and its application to algorithmic account-

ability)68

Themassive sizes of contemporary machine learning datasets

make it intractable to thoroughly scrutinize their contents,69 and

thus it is hard to know where to begin looking for the kinds of

representational and statistical biases outlined in the previous

section. Indeed, a culture characterized by a desire to harness

large datasets without questioning what is in them or how it

got there, no matter how unsavory the details might be, pro-

duces what machine learning researcher Vinay Prabhu calls

the ‘‘abattoir effect.’’70 While many of the dysfunctional contents

discovered in datasets were found by using intuition and domain

expertise to construct well-designed dataset ablations and au-

dits, some of the most disturbing were found by manually comb-

ing through the data.

Further insight into issues with dataset contents can be found

in work that attempts to identify and address some of the prob-

lems outlined in the previous section. In this section, we review a

variety of methods for exploring the contents of datasets in sup-

port of discovering and mitigating the issues that lurk within da-

tasets.

Inspection
Birhane and Prabhu,27 summarized in the previous section, and

Pipkin71 show how meticulous manual audits of large datasets

are compelling ways to discover themost surprising and disturb-

ing contents therein. Pipkin spent hundreds of hours watching

the entirety of MIT’s ‘‘Moments in Time’’ video dataset,72 finding

shocking and unexpected footage of violence, assault, and

death. They provocatively point out, in a reflection on the pro-

cess of developing their artistic intervention Lacework, that the

researchers who commission the curation of massive datasets

may have less intimate familiarity with the contents of these

datasets than those who are paid to look at and label individual

instances, and, as we discuss in Labor, there is growing aware-
ness of the need to better support the workers at the front lines of

the often grim and under-valued work of data labeling. Caswell

et al.73 show the value of manual audits of multilingual corpora

to highlight the dubious quality of many datasets used for lan-

guage model training. Their team of human volunteers, with pro-

ficiency in about 70 languages altogether, found that several

corpora scraped from the web are rife with examples of mis-

translated text and mislabeled linguistic content (i.e., content in

a particular language labeled erroneously as belonging to

another language).

Introspection
While manual audits have provided invaluable insights into the

contents of datasets, as datasets swell in size this technique is

not scalable. Recent work has proposed algorithmic interven-

tions that assist in the exploration and adjustment of datasets.

Some methods leverage statistical properties of datasets to

surface spurious cues and other possible issues with dataset

contents. The AFLITE algorithm proposed by Sakaguchi et al.74

provides a way to systematically identify dataset instances that

are easily gamed by a model, but in ways that are not easily de-

tected by humans. This algorithm is applied by Le Bras et al.75 to

a variety of NLP datasets, and they find that training models on

adversarially filtered data leads to better generalization to out-

of-distribution data. In addition, recent work by Swayamdipta

et al.76 proposes methods for performing exploratory data ana-

lyses based on training dynamics that reveal edge cases in the

data, bringing to light labeling errors or ambiguous labels in data-

sets. Northcutt et al.77 combine an algorithmic approach with

human validation to surface labeling errors in the test set for Im-

ageNet.

Han et al.78 demonstrate the application of influence functions,

originally introduced by Koh and Liang79 as a way to identify the

influence of particular training examples onmodel predictions, to

the discovery of data artifacts. The REVISE tool by Wang et al.80

can be used to identify unequal representation in image descrip-

tion datasets by leveraging features of the images and the corre-

sponding texts. Using their tool, they spot that images of outdoor

athletes are overwhelmingly labeled as men, and that in images

where a person is too small for any sort of gender to be told at all,

they are still labeled as men.

In response to a proliferation of challenging perturbations

derived from existing datasets to improve generalization capa-

bilities and lessen the ability for models to learn shortcuts, Liu

et al.81 propose ‘‘inoculation by fine-tuning’’ as a method for in-

terpreting what model failures on perturbed inputs reveal about

weaknesses of training data (or models). Recent papers also

outline methodologies for leveraging human insight in the

manual construction of counterfactual examples that comple-

ment instances in NLP datasets to promote better general-

ization.82,83

The case of VQA-CP84 provides a cautionary tale of when a

perturbed version of a dataset is, itself, prone to spurious

cues. This complement to the original Visual Question Answering

(VQA) dataset, consisting of VQA instances redistributed across

train and test sets as an out-of-domain benchmark for the task,

was found to be easy to ‘‘solve’’ with randomly generated an-

swers. Cleverly designed sabotages that are meant to

strengthen models’ ability to generalize may ultimately follow
Patterns 2, November 12, 2021 5



ll
OPEN ACCESS Review
the same patterns as the original data, and are thus prone to the

same kinds of artifacts. While this has prompted attempts to

make models more robust to any kind of dataset artifact, it

also suggests that there is a broader view to be taken with

respect to rethinking how we construct datasets for tasks

overall.

Considering that datasets will always be imperfect repre-

sentations of real-world capabilities, recent work proposes

methods of mitigating the impacts of noise in data on model

performance. Teney et al.85 propose an auxiliary training

objective using counterfactually labeled data to guide models

toward better decision boundaries. He et al.86 propose the

DRiFT algorithm for ‘‘unlearning’’ dataset bias. Sometimes,

noise in datasets is not symptomatic of statistical anomalies

or labeling errors, but rather, a reflection of variability in hu-

man judgment. Pavlick and Kwiatkowski87 find that human

judgment on natural language inference tasks is variable,

and that machine evaluation on this task should reflect this

variability.

Many of the methods outlined in this section crucially rely on

statistical patterns in the data to surface problematic instances;

it is up to human judgment to make sense of the nature of these

problematic instances, whether they represent logical inconsis-

tencies with the task at hand, cases of injustice, or both. In addi-

tion, while a variety of recent papers have proposed methods for

removing spurious cues from training data or ‘‘de-biasing’’

models, recent work has shown that this can be damaging for

model accuracy.88

In contrast to a focus on statistical properties of datasets as a

site for addressing andmitigating harms, Denton et al.89 propose

a research agenda in the ‘‘data genealogy’’ paradigm that pro-

motes critical assessment of the design choices with respect

to the data sources, theoretical motivations, and methods

used for constructing datasets. Prospective accounting for data-

set contents using some of the methods discussed at the end of

the previous section can offset the potential of post-hoc docu-

mentation debt that can be incurred otherwise.69

Summary
In this section we have reviewed a variety of works that address

dataset content issues by providing lenses on data for inspection

and introspection. We emphasize that procedural dataset mod-

ifications and bias mitigation techniques are only useful insofar

as the dataset in question itself represents a well-designed

task. In making lemonade from lemons, we must ensure the

lemons are not ill-gotten or poorly formed.

DATASET CULTURE
‘‘Every data set involving people implies subjects and ob-

jects, those who collect and those who make up the

collected. It is imperative to remember that on both sides

we have human beings.’’—Mimi Ọnụọha (The Point of

Collection)90

A final layer of critiques looks at the culture around dataset use

in machine learning. In this section, we examine how common

practices in dataset usage impact society at large by reviewing

papers that ask: What are issues with the broader culture of da-
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taset use? How do our dataset usage, storage, and re-usage

practices wrench data away from their contexts of creation?

What are the labor conditions under which large-scale crowd-

sourced datasets are produced? Finally, what can be learned

from looking at machine learning dataset culture from a legal

perspective?

Benchmarking practices
Benchmark datasets play a critical role in orienting the goals of

machine learning communities and tracking progress within

the field.5,89 Yet, the near singular focus on improving bench-

mark metrics has been critiqued from a variety of perspectives.

Indeed, the current benchmarking culture has been criticized

as having the potential to stunt the development of new ideas.91

NLP researchers have exhibited growing concern with the singu-

lar focus on benchmark metrics, with several calls to include

more comprehensive evaluations—including reports of energy

consumption, model size, fairness metrics, and more—in addi-

tion to standard top-line metrics.92–94 Sculley et al.95 examine

the incentive structures that encourage singular focus on bench-

mark metrics—often at the expense of empirical rigor—and offer

a range of suggestions including incentivizing detailed empirical

evaluations, including negative results, and sharing additional

experimental details. From a fairness perspective, researchers

have called for the inclusion of disaggregated evaluationmetrics,

in addition to standard top-line metrics, when reporting and doc-

umenting model performance.96

The excitement surrounding leaderboards and challenges can

also give rise to a misconstrual of what high performance on a

benchmark actually entails. In response to the recent onslaught

of publications misrepresenting the capabilities of BERT lan-

guage models, Bender and Koller97 encourage NLP researchers

to be attentive to the limitations of tasks and include error anal-

ysis in addition to standard performance metrics.

Sen et al.58 have questioned the legitimacy of the notion of a

gold standard dataset for certain tasks, empirically demon-

strating divergences between gold standards set by AMT

workers and those from other communities. Other data-oriented

fields have grappled with the politics inherent in quantification

andmeasurement practices.98–100 Jacobs andWallach101 locate

dataset measurement concerns as a key factor underlying unfair

outcomes of algorithmic systems and propose that machine

learning practitioners adopt measurement modeling frameworks

from the quantitative social sciences.

Data management and distribution
Secure storage and appropriate dissemination of human-

derived data is a key component of data ethics.102 To have a cul-

ture of care for the subjects of the datasets we make use of re-

quires us to prioritize the well-being of the subjects in the dataset

throughout collection, development, and distribution. To do so

systematically, the machine learning community still has much

to learn from other disciplines with respect to how they handle

the data of human subjects. Unlike in the social sciences ormed-

icine, the machine learning field has yet to develop the data

management practices required to store and transmit sensitive

human data.

Metcalf and Crawford103 go so far as to suggest the re-framing

of data science as human subjects research, indicating the need
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for institutional review boards and informed consent as re-

searchers make decisions about other people’s personal infor-

mation. Particularly in consideration of an international context,

where privacy concernsmay be less regulated in certain regions,

the potential for data exploitation is a real threat to the safety and

well-being of data subjects.104 As a result, those that are the

most vulnerable are at risk of losing control of the way in which

their own personal information is handled. Without individual

control of personal information, anyonewho happens to be given

the opportunity to access their unprotected data can act with lit-

tle oversight, potentially against the interests or well-being of

data subjects. This can become especially problematic and

dangerous in the most sensitive contexts, such as personal

finance information, medical data, or biometrics.105

However, machine learning researchers developing such da-

tasets rarely pay attention to this necessary consideration. Re-

searchers will regularly distribute biometric information—for

example, face image data—without so much as a distribution

request form or required privacy policy in place. Furthermore,

the images are often collected without any level of informed con-

sent or participation.6,50,106 In the context of massive data

collection projects, the potential harms extend beyond those

that can be addressed with individual consent. Solove107 pro-

vides a thoughtful overview of privacy as both a societal and in-

dividual value.

Even when these datasets are flagged for removal by the cre-

ators, researchers will still attempt to make use of that now illicit

information through derivative versions and backchannels. For

example, Peng108 finds that, after certain problematic face data-

sets were removed, hundreds of researchers continued to cite

and make use of copies of this dataset months later. Without

any centralized structure of data governance for the research

in the field, it becomes nearly impossible to take any kind of sig-

nificant action to block or otherwise prevent the active dissemi-

nation of such harmful datasets.

Security concerns arise due to themanner in which large-scale

datasets are curated and disseminated through a web-scraping

paradigm. For example, it was recently discovered that one of

theURLs in the ImageNet dataset that originally pointed to an im-

age of a bat instead linked to malware, potentially making data-

set users vulnerable to hacking.109 Carlini et al.110 also illustrate

how large language models can be prodded to disgorge sensi-

tive, personally identifying information they have picked up

from their training data.

Best practices for sharing and managing datasets are a bur-

geoning area of research in NLP. In addition to a comprehensive

accounting for themotivations and contents of abusive language

datasets, Vidgen and Derczynski111 provide several suggestions

for the responsible dissemination of such data, including the

establishment of data trusts, platform-supported datasets, and

the use of synthetic data.

Use and reuse
Several scholars havewritten on the importance of reusable data

and code for reproducibility and replicability in machine

learning,112,113 and the publication of scientific data is often

seen as an unmitigated good, either in the pursuit of reproduc-

ibility114 or as a means of focusing research effort and growing

research communities (e.g., through shared task evaluations115).
Here, we want to consider the potential pitfalls of taking data that

had been collected for one purpose and using it for one in which

it was not intended, particularly when this data reuse is morally

and ethically objectionable to the original curators. Science

and technology scholars have considered the potential incom-

patibilities and reconstructions needed in using data from one

domain in another.116 Indeed, Strasser and Edwards discuss

several major questions for Big Data in science and engineering,

asking critically ‘‘Who owns the data?’’ and ‘‘Who uses the

data?’’.117 Although in Legal perspectives we discuss ownership

in a legal sense, ownership also suggests an inquiry into who the

data have come from, such as the ‘‘literal [.] DNA sequences’’

of individuals117 or other biometric information. In this case,

considering data reuse becomes a pivotal issue of benchmark

datasets.

Instances of data reuse in benchmarks are often seen in the

scraping and mining context, especially when it comes to Flickr,

Wikipedia, and other openly licensed data instances. Many of

the instances in which machine learning datasets drawn from

these and other sources in ways that incur serious privacy viola-

tions are well-documented by Harvey and LaPlace,106 who

discuss instances of scraping Flickr and other image hosting ser-

vices for human images without explicit user consent.

The reuse of data can involve reusing data from one context

and using this decontextualized data for machine learning appli-

cations. This dynamic is exemplified well by historian of science

Joanna Radin’s exploration of the peculiar history of the Pima In-

dians Diabetes Dataset (PIDD) and its introduction into the UCI

Machine Learning Repository.118 The PIDD has been used thou-

sands of times as a ‘‘toy’’ classification task and currently lives in

the UCI repository, a major repository for machine learning data-

sets. The data were collected by the National Institutes of Health

from the Indigenous community living at the Gila River Indian

Community Reservation, which had been extensively studied

and restudied for their high prevalence of diabetes. In her history

of this dataset, Radin is attentive to the politics of the creation

and processing of the data itself. The fact that ‘‘data was used

to refine algorithms that had nothing to do with diabetes or

even to do with bodies, is exemplary of the history of Big Data

writ large’’. Moreover, the residents of the Reservation, who refer

to themselves as the Akimel O’odham, had been the subject of

intense anthropological and biomedical research, especially

due to a high prevalence of diabetes, which in and of itself

stemmed from a history of displacement and settler-colonialism.

However, their participation in research had not yielded any sig-

nificant decreases in obesity or diabetes among community

members.

Another concerning example of data reuse occurs when deriv-

ative versions of an original dataset are distributed—beyond the

control of its curators—without any actionable recourse for

removal. The DukeMTMC (DukeMulti-Target, Multi-Camera) da-

taset was collected from surveillance video footage from eight

cameras on the Duke campus in 2014, used without consent

of the individuals in the images and distributed openly to re-

searchers in the US, Europe, and China. After reporting in the

Financial Times119 and research by Harvey and LaPlace,106 the

dataset was taken down on June 2, 2019. However, Peng108

has recently highlighted how the dataset and its derivatives are

still freely available for download and used in scientific
Patterns 2, November 12, 2021 7
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publications. It is nearly impossible for researchers to maintain

control of datasets once they are released openly or if they are

not closely supervised by institutional data repositories.

Across all of these instances of data use and reuse we

observe that, when datasets are not created specifically and

only for the use of machine learning research, there is the po-

tential for a culture clash between the data practices of ma-

chine learning and the data practices of the field where the

data comes from. Currently, machine learning (and computer

science more generally) is relatively powerful compared with

many other academic disciplines and risks exporting its data

practices, whereas we argue that, as a field, we should be look-

ing to learn from other fields’ approaches to appropriate and

situated data handling (see, e.g., Jo and Gebru47). We further

note that a culture change around data use and reuse is a

field-level problem that will require community buy-in and

field-level allocation of resources to address. For example, to

address the ways in which deprecated datasets, such as

DukeMTMC, continue to circulate it is not enough to create a

central repository that holds information about dataset retrac-

tion and other updates; researchers must also be incentivized

and trained to consult such repositories.

Labor
As the machine learning community has increasingly turned to

the cheap and scalable work forces offered by crowd sourcing

platforms, there has been growing concern regarding the work-

ing conditions of those laboring on machine learning datasets.

Data annotation is often cast as unskilled work—work anyone

can perform—which in turn contributes to a dehumanizing and

alienating work experience. For example, Irani120 describes

how crowdwork platforms, such as AMT, create a hierarchy of

data labor, positioning crowdwork as menial work relative to

the innovative work of those leading dataset development. Miceli

et al.55 discuss how, in commercial data annotation companies,

power asymmetries and company hierarchies affect the work

output of data annotation teams. Framing data annotation as un-

skilled work frames crowdworkers as essentially interchange-

able, and creates the infrastructural conditions of precarity and

invisibility.121–123 For example, crowd-sourced data annotation

is typically mediated through digital interfaces that distance the

crowdworkers from the dataset developers constructing annota-

tion tasks, rendering both the workers and the labor concerns

they might face invisible.124,125 Such labor concerns include

low and unstable wages, unfair treatment by task requesters,

and barriers to worker solidarity and collective action.126–128

In response to these growing concerns, guidelines and tools

for task creators have been developed to help facilitate fair

pay129,130 and interventions oriented at crowdworkers directly

have been developed to support worker solidarity124,131 and

fair pay.132 Gray and Suri128 also discuss corporate interven-

tions, such as providing collaborative online discussion spaces,

offline shared workspaces, and portable reputation systems, as

well as governmental responses, such as the construction of

worker guilds, unions, and platform cooperatives, and the provi-

sion of a social safety network for these precarious workers.

As personal data are increasingly commodified by technol-

ogy companies and harvested at scale to improve proprietary

machine learning systems, often in ways that are by turns
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inscrutable or distasteful to the general public,133 recent pro-

posals call for not only re-framing data as labor,134 but also

for ‘‘data strikes’’ in which users collectively withhold their

data as a means to shift the power imbalance back toward

subjects who are not compensated for the ambient collection

of their data.135

Legal perspectives
The above subsections surveyed a range of literature critiquing

different aspects of dataset culture in machine learning. In this

section, we review literature that looks at the collection and

use of datasets from a legal perspective, considering both the

legal risks that dataset collectors incur and the extent to which

existing legal frameworks protect data subjects. Benchmark da-

tasets are often mined from the internet, collecting data in-

stances that have various levels of licensing attached and storing

them into a single repository. Different legal issues arise at each

stage in the data-processing pipeline, from collection to annota-

tion, from training to evaluation, from inference and the reuse of

downstream representations, such as word embeddings and

convolutional features.136 Legal issues also arise that impact a

host of different people in the process, including dataset cura-

tors, AI researchers, copyright holders, data subjects (those

people whose likenesses, utterances, or representations are in

the data), and consumers (those who are not in the data but

are impacted by the inferences of the AI system). Different areas

of law can protect (and also possibly harm) each of the different

actors in turn.137

Benchmark datasets are drawn from a number of different

sources, each with a different configuration of copyright

holders and permissions for their use in training and evalua-

tion in machine learning models. For instance, ImageNet

was collected through several image search engines where

licensing/copyright restrictions on data instances in those im-

ages are unknown.138 The ImageNet project does not host the

images on their website, and therefore sidesteps the copy-

right question by claiming that they operate like a search en-

gine139 (fn. 36). PASCAL VOC was collected via the Flickr API,

meaning that the images were all held through the Creative

Commons license.140 Open licenses, such as Creative Com-

mons, allow for training of machine learning models under

fair use doctrine.141 Faces in the Wild and Labeled Faces in

the Wild were collected through Yahoo News, and via an

investigation of the captions on the images we can see that

the major copyright holders of those images are news wire

services, including the Associated Press and Reuters.142

Other datasets are collected in a studio environment, where

images were taken by dataset curators and therefore are

copyright holders, which avoids potential copyright issues.

US copyright law is not well-suited to cover the range of uses

of benchmark datasets, and there is limited case law establish-

ing precedent in this area. Legal scholars have defended the

use of copyrighted material for data science and machine

learning by suggesting that this material’s usage is protected

by fair use, since it entails the non-expressive use of expressive

materials.143 In contrast, Levendowski139 has argued that copy-

right is actually a useful tool for battling algorithmic bias by

offering a larger pool of works fromwhichmachine learning prac-

titioners can draw from. She argues that, given that pre-trained
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representations, such as word2vec and other word embed-

dings, suffer from gender and racial bias,144,145 and other public

domain datasets are older or obtained through means likely to

result in amplified representation of stereotypes and other biases

in the data (e.g., the Enron text dataset), that using copyrighted

data can battle biased datasets and their use would fall under

copyright’s fair use exception.

Even in cases in which all data were collected legally from a

copyright perspective—such as through open licenses, like

Creative Commons—many downstream questions remain,

including issues about privacy, informed consent, and pro-

cedures of opt-out.141 O’Sullivan109 discusses how technically

legal uses of personal data that are not anticipated by or fully

disclosed to the original owners of the data, e.g., the use of

images scraped from the web to train facial recognition

algorithms, constitute the ethical equivalent of data theft.

Copyright guarantees are not sufficient protections for safe-

guarding privacy rights of individuals, as seen in the collection

of images for the Diversity in Faces and MegaFace data-

sets.50,119 Potential privacy violations arise when datasets

contain biometric information that can be used to identify in-

dividuals, including faces, fingerprints, gait, and voice among

others. However, at least in the US, there is no national-level

privacy law that deals with biometric privacy. A patchwork

of laws exist in Illinois, California, and Virginia that have the

potential to safeguard the privacy of data subjects and con-

sumers. However, only the Illinois Biometric Privacy law re-

quires corporate entities to provide notice to data subjects

and obtain their written consent.137

The machine learning and AI research communities have re-

sponded to this crisis by attempting to outline alternatives to

licensing which make sense for research and benchmarking

practices more broadly. The Montreal Data License (https://

montrealdatalicense.com/) outlines different contingencies

for a particular dataset, including whether the dataset will be

used in commercial versus non-commercial settings, whether

representations will be generated from the dataset, whether

users can annotate the label or use subsets of it, and

more.136 This is a step forward in clarifying the different

ways in which the dataset can be used once it has been

collected, and therefore is a clear boon for AI researchers

who create their own data instances, such as photos devel-

oped in a studio or text or captions written by crowdworkers.

However, this does not deal with the larger issue of the copy-

right status of data instances scraped from the web, or the

privacy implications of those data instances.

Summary
In this section,wehave shed light on issues aroundbenchmarking

practices, dataset use and reuse, and the legal status of bench-

mark datasets. These issues are more about the peculiar prac-

tices of data in machine learning culture, rather than the technical

challenges associated with benchmark datasets. In this way, we

want to highlight how datasets work as culture—that is, ‘‘not

[as] singular technical objects that enter into many different cul-

tural interactions, but . rather [as] unstable objects, culturally

enacted by the practices people use to engage with them’’.146

Interrogating benchmark datasets from this view requires us to

expand our frame from simply technical aspects of the system,
to thinking how datasets intersect with communities of practice,

communities of data subjects, and legal institutions.147

CONCLUSION
‘‘Not all speed is movement.’’—Toni Cade Bambara (On

the Issue of Roles)148

In this paper, we present a survey of issues in dataset design

and development, as well as reflections on the current broader

culture of dataset use in machine learning. A viewpoint internal

to this culture values rapid and massive progress: ever larger

training datasets, used to train ever larger models, which post

ever higher scores on ever harder benchmark tasks developed

at a quicker and quicker pace. What emerges from the papers

we survey, however, is a viewpoint, largely external to the current

culture of dataset use, which reveals intertwined scientific and

ethical concerns appealing to a more careful, systems-level

and detail-oriented strategy.

The critiques of dataset design and development we survey in

this paper highlight various different kinds of pitfalls: first, there

are challenges with representation wherein datasets are biased

both in terms of which data subjects are predominantly included

and whose gaze is represented. Second, we find issues with the

artifacts in the data, which machine learning models can easily

leverage to ‘‘game’’ the tasks. Third, we find evidence of whole

tasks which are spurious, where success is only possible given

artifacts because the tasks themselves do not correspond to

reasonable real-world correlations or capabilities. Finally, we

find critiques of insufficiently careful data annotation and docu-

mentation practice, which erode the foundations of any scientific

inquiry based on these datasets.

A variety of methods have been applied to examining dataset

contents to surface some of the quality issues and harmful con-

tents within. Attempts to rehabilitate datasets or models starting

from the flawed datasets themselves further reinforce the prob-

lems outlined in the critiques of dataset design and develop-

ment. The development of adversarial datasets or challenge

sets, while possibly removing some spurious cues, does not

address most of the other issues with either the original datasets

or the research paradigm.

Critiques of the dataset culture itself focus on the overem-

phasis on benchmarking to the exclusion of other evaluation

practices, legal and ethical issues in data management, distribu-

tion, and reuse, and labor practices in data curation. Hyper-

focus on benchmarking pushes out work that connects models

more carefully to their modeling domain and approaches not

optimized for the available crop of benchmarks. The papers we

surveyed suggest a need for work that takes a broader view

than is afforded by the one-dimensional comparison of systems

typical of benchmarks. Furthermore, critiques of data manage-

ment and distribution show the need for growing a culture of

care for the subjects of datasets in machine learning, i.e., to

keep in mind that ‘‘data are people’’ and behave appropriately

toward the people from whom we collect data.149 Reflections

on issues of data reuse emphasize the connection between

data and its context, and the risks of harm (to data subjects

and others) that arise when data is disconnected from its context

and carried to and recontextualized in new domains. Legal
Patterns 2, November 12, 2021 9
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vulnerabilities inherent to current data collection and distribution

practices in machine learning as well as the often precarious and

under-compensated nature of dataset work reveal the complex-

ities of data development and use within the context of society.

Overall, these critiques shed light on the need for the kind of

broader systems-level thinking required to navigate an under-

valued although clearly necessary aspect of machine learning

development.

What paths forward are visible from this broader viewpoint?We

argue that fixes that focus narrowly on improving datasets by

making them more representative or more challenging might

miss the more general point raised by these critiques—namely

that data challenges are in general under-considered in the field.

If suchdata issues are left unaddressed, the fieldwill be trapped in

the Sisyphean task of finding and fixing dataset flaws rather than

taking the necessary step back to address the more systematic

issues at play. This renewed focus is essential tomaking progress

as a field, so long as notions of progress are largely defined by

performance on datasets. At the same time, wewish to recognize

and honor the liberatory potential of datasets, when carefully de-

signed, to make visible patterns of injustice in the world such that

they may be addressed (see, for example, the work of Data for

Black Lives [https://d4bl.org/]). Recent work by Register and

Ko150 illustrates how educational interventions that guide stu-

dents through the process of collecting their own personal data

and running it through machine learning pipelines can equip

them with skills and technical literacy toward self-advocacy—a

promising lesson for the next generation of machine learning

practitioners and for those impacted by machine learning sys-

tems. We also recognize the need for a fundamental shift in the

incentive structures that guide howmachine learningpractitioners

prioritize dataset-related tasks. The introduction of a ‘‘Datasets

and Benchmarks Track’’151 at the Neural Information Processing

Systems Conference 2021, which will incentivize data-focused

research, indicates a positive step in this direction.

We hope the response to this work goes beyond optimizing

datasets to be ‘‘bigger’’ and ‘‘better’’—a goal that does

nothing to challenge the current paradigm of techniques idol-

izing speed and scale. Instead, we aspire for this survey to

also prompt a more cautious and complex view of the consid-

erations involved with data in the machine learning field. We

advocate for a turn in the culture toward carefully collected

datasets that are rooted in their original contexts, distributed

in ways that respect the intellectual property and privacy

rights of data creators and data subjects, and constructed

in conversation with impacted stakeholders or domain ex-

perts. This is how we hope to arrive at datasets that faithfully

embody tasks targeting realistic capabilities and that

acknowledge the humanity of those represented within the

data, in addition to those participating in the process of its

creation. Such datasets will undoubtedly be more expensive

to create, in time, money, and effort, but this is small price

to pay for the consideration of the human lives at stake.
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