Introduction to Q-learning and Deep Qnetworks

Homeproblem B: Playing Tetris using Reinforcement: Learning

Advanced machine learning with neural networks

Kristian Gustavsson, Department of Physics, University of Gothenburg, Sweden kristian.gustafsson@physics.gu.se

Slide 3 What is Reinforcement Learning?

Reinforcement Learning: An introduction, Sutton & Barto (2018) Machine learning with neural networks, Mehlig (2021)

Scheme that uses trial and error to find optimal strategies to achieve a predetermined task.

Learning uses a reward signal only (no supervisor).

Example applications

- Gaming strategies
- Control theory
- Industrial optimizations
- Understanding nature

Slide 4 Minih et al, Nature **518** 529-533 (2015) Application: Gaming strategies

before training

Learning to play 'Breakout'

Slide 5 Minih et al, Nature **518** 529-533 (2015) Application: Gaming strategies

during training

Learning to play 'Breakout'

Slide 6 Application: Gaming strategies

Learning to play 'Breakout'

Agent The player Environment The game (and player) States Four most recent game images Actions Joystick direction Reward Increment in game score

Slide 7 Silver et al, Nature **529** 484-489 (2016) **Application:** Gaming strategies

Learning to play 'Go'

Nature **550** 354-359 (2017)

Top view

Agents Both players **Environment** The game (and players) **States** Positions of game markers Actions Place new game marker **Reward** + on win; – on lose

Slide 8 Abbeel, Coates & Ng, IJRR (2010) Application: Control theory

Helicopter aerobatics

Agent The helicopter operator Environment The helicopter and the surroundings States Position, orientation, velocity, and angular velocity Actions Change main rotor tilt or angle of attack, change tail rotor thrust Reward Penalty for deviations from target trajectory

Slide 10 Kiran et al, IEEE Transactions on Intelligent Transportation Systems (2021) Application: Control theory

Decision making and planning in self-driving cars

Agent The driver Environment The car and the surroundings States Position and velocity. Scene representation. Actions Steering, accelerating, braking. Control blinkers, lights, horn etc. Reward + for following road and reaching target; Neg. for collision or crash

Li et al, IEEE Transactions on Cybernetics (2020) Application: Industrial optimizations

Reducing cooling energy consumption by 40% in Google servers

Agent Controller of cooling system Environment Data center States Workload and ambient temperature Actions Control cooling system Reward Neg. for power usage or outlet temperature outside specified range

Slide 12 Application: Understanding nature

Verma et al, PNAS 115, 5849–5854 (2018)

Colabrese et al, PRL 118, 158004 (2017)

Swimming strategies in turbulent flows

Agent Swimmer

Environment Turbulent flow

States Flow properties

Actions Swimming behavior

Reward Spend little energy, swimming in target direction

- States Flow regions 1, 2, 3 and 4
- Actions
- Move one state right
- Move one state left
- Rewards
- 0 for moving one state left
- -1 for state 1 to state 2
- -1 for state 2 to state 3
- +10 for state 3 to state 4
- **Q-table** (stores experience)

Slide 14

Slide 15

Slide 16

Slide 17 Zermelo, Z. Angew. Math. Mech. 11, 114–124 (1931); Biferale et al, Chaos 29, 103138 (2019) Example: Zermelo's problem

- Navigation from point A to point B in a background flow
- Constant swimming speed v_{swim}

How to choose swimming direction?

Slide 18 Zermelo, Z. Angew. Math. Mech. 11, 114–124 (1931); Biferale et al, Chaos 29, 103138 (2019) Example: Zermelo's problem

• Naive approach: always swim towards the target

Slide 19 Zermelo, Z. Angew. Math. Mech. 11, 114–124 (1931); Biferale et al, Chaos 29, 103138 (2019) Example: Zermelo's problem (Q-learning)

Slide 20 Zermelo, Z. Angew. Math. Mech. 11, 114–124 (1931); Biferale et al, Chaos 29, 103138 (2019) Example: Zermelo's problem (Q-learning)

Use Q-table to store experience (expected future reward)

 $Q(\mathbf{s}, \mathbf{a}) = \alpha \left[\mathbf{r} + \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}') \right] + (1 - \alpha) Q(\mathbf{s}, \mathbf{a})$

Canvas/files/Homeworks/HW B Kristian/HomeworkB_RL.pdf

Home problem B: Introduction

Task To learn to play simplified Tetris

Slide 23 Canvas/files/Homeworks/HW B Kristian/HomeworkB_RL.pdf

Home problem B: Getting started

- Download the following files
 - Canvas/files/Homeworks/HW B Kristian/tetris.py
 - Canvas/files/Homeworks/HW B Kristian/gameboardClass.py
 - Canvas/files/Homeworks/HW B Kristian/agentClass.py
- Make sure you have all required packages installed
 - numpy
 - pygame
 - h5py
 - torch/tensorflow
- Run tetris.py
 - Use original parameters to test game
 - Set human_player=0 and param_set to one of PARAM_TASK1a, PARAM_TASK1b, PARAM_TASK1c, PARAM_TASK1d, PARAM_TASK2a (and optional PARAM_TASK2b) to address the corresponding task in HomeworkB_RL.pdf
- Complete the code in agentClass.py to address the tasks in HomeworkB_RL.pdf

Home problem B: Discussion

Think about/Discuss with your neighbors

What are possible choices of states and actions? What is good/bad with different choices of states and actions?

Agent The player Environment The game (and player) States ??? Actions ??? Reward + 10^{N-1} for completing N rows, -100 for game over

Home problem B: Actions

Use all allowed ways to place a tile as actions

- Tile orientation
- Horizontal position of left tile edge

Canvas/files/Homeworks/HW B Kristian/HomeworkB_RL.pdf

Home problem B: States

States that should be used are a combination of the following

• Tile identifier of tile to be placed

Binary matrix representation of game board occupation
Example

Game board

 $\begin{pmatrix} -1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$

Matrix representation

Repeat until game over or a predefined number of moves (episodic task)

 $s_0, a_0, r_1, s_1, a_1, \ldots, s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, \ldots, r_T, s_T$

Reinforcement learning algorithms aim to find strategy/policy (choice of action given state) that maximizes <u>long term</u> reward.

Sutton & Barto (2018), Mehlig (2021)

Optimal policy in Markovian systems

Policy Method of choosing α given s

Defined as probability $\pi(a|s)$

Examples

- Always choose the same action $a^{(1)}: \pi(a|s) = \delta_{a,a^{(1)}}$
- Choose action randomly: $\pi(a|s) = \frac{1}{N_a}$ with $a \in \{a^{(1)}, a^{(2)}, \dots, a^{(N_a)}\}$
- Use the optimal policy: $\pi^*(a|s) = \delta_{a,a_*}$ where $a_* = \operatorname{argmax}_{a'}Q^*(s,a')$ and $Q^*(s_t, a_t) = \langle r_{t+1} + r_{t+2} + \cdots + r_T \rangle$ is the expected future reward when following the optimal policy.

Goal Find $Q^*(s, a) \Rightarrow$ optimal policy $\pi^*(a|s)$

Brute force Find $Q^*(s, a)$ by evaluating $Q_{\pi}(s, a)$ of all policies $\pi \max_a Q^*(s, a) \ge \max_a Q_{\pi}(s, a)$

Problem: $N_a^{N_s}$ different policies if N_s states and N_a actions

Sutton & Barto (2018), Mehlig (2021)

Optimal solution using Q-learning

- Q-learning algorithm (aims to find approximate $Q({m s},{m a})pprox Q^*({m s},{m a})$)
- 1. Start with arbitrary Q-table $Q_0({m s},{m a})$ (size $N_{m s} imes N_{m a}$)
- 2. Evaluate initial state s_t (with t = 0)
- 3. Choose action a_t according to policy, e.g. ε -greedy
- 4. Apply a_t and evaluate s_{t+1} and r_{t+1}
- 5. Update $Q_{t+1}(\mathbf{s_t}, \mathbf{a_t}) = Q_t(\mathbf{s_t}, \mathbf{a_t}) + \alpha \Delta Q$

$$\Delta Q = \mathbf{r_{t+1}} + \max_{\mathbf{a'}} Q_t(\mathbf{s_{t+1}}, \mathbf{a'}) - Q_t(\mathbf{s_t}, \mathbf{a_t})$$

- 6. Repeat from 3. until episode is finished
- 7. Repeat from 2. (keeping Q) until convergence

Solution Add exploration, e.g. *€* -greedy policy

Slide 32 Sutton & Barto (2018), Lapan (2020) Optimal solution using Deep Q-networks

Idea Replace Q-table by deep neural network

Policy
$$a_t = \begin{cases} \text{random valid action} & \text{with prob. } \varepsilon_E \\ \operatorname{argmax}_{a'}Q_{\operatorname{nn}}(s_t, a') & \text{otherwise} \end{cases}$$

 $\varepsilon_E = \max(\varepsilon, 1 - E/E_0)$, episode E

Sutton & Barto (2018), Lapan (2020)

Optimal solution using Deep Q-networks Minimize $|\Delta Q(T_t)| = |r_{t+1} + \max_{a'} Q_{nn}(s_{t+1}, a') - Q_{nn}(s_t, a_t)|$ for transitions $T_t = \{s_t, a_t, r_{t+1}, s_{t+1}\}$

Loss function

$$\sum_{\tau} \Delta Q(T_{\tau})^2$$

Problem 1

Data is not independent and identically distributed (needed for optimizing the loss function)

Solution

Use 'experience replay buffer' containing B last state transitions

 $\begin{array}{cccc} T_t & & \text{Choose } b & & T_{i_1} & & \text{Optimize the loss} \\ T_{t-1} & & \text{transitions} & & T_{i_2} & & \text{function for the mini} \\ \vdots & & & & T_{i_2} & & \text{batch data} \\ \vdots & & & & & T_{t-B+1} & & & T_{i_b} \end{array}$

Experience buffer

Mini batch

Updated network

Sutton & Barto (2018), Lapan (2020)

Optimal solution using Deep Q-networks

Minimize $|\Delta Q(T_t)| = |r_{t+1} + \max_{a'} Q_{nn}(s_{t+1}, a') - Q_{nn}(s_t, a_t)|$ for transitions $T_t = \{s_t, a_t, r_{t+1}, s_{t+1}\}$ Loss function $\sum \Delta Q(T_{\tau})^2$

Problem 2

Potential instability due to 'bootstrapping': we use Q_{nn} to estimate the expected future reward when updating Q_{nn} .

Solution

Introduce 'target network' $\hat{Q}_{\mathrm{nn}}(s,a)$ when estimating future reward

$$\Delta Q(T_t) = \mathbf{r_{t+1}} + \max_{a'} \hat{Q}_{nn}(\mathbf{s_{t+1}}, a') - Q_{nn}(\mathbf{s_t}, a_t)$$

 $\hat{Q}_{\mathrm{nn}}(\mathbf{s}, \mathbf{a})$ is a copy of Q_{nn} , but only occasionally updated.

Sutton & Barto (2018), Lapan (2020)

Optimal solution using Deep Q-networks

Deep Q-network algorithm

- 1. Start with arbitrary and identical Q-networks $Q_{nn}(s, a)$ and $\hat{Q}_{nn}(s, a)$
- 2. Evaluate initial state
- 3. Choose action based on $Q_{\mathrm{nn}}(\mathbf{s}, \mathbf{a})$ and $\boldsymbol{\varepsilon}_{\mathbf{E}}$
- 4. Apply a_t and evaluate s_{t+1} and r_{t+1}
- 5. Store transition $T_t = \{s_t, a_t, r_{t+1}, s_{t+1}\}$ in replay buffer
- 6. Sample mini-batch of transitions from the replay buffer
- 7. For each transition in the mini-batch, use $\hat{Q}_{nn}(s, a)$ to calculate target value: y = r if s_{t+1} is terminal, $y = r + \max_{a'} \hat{Q}_{nn}(s_{t+1}, a')$ otherwise.
- 8. Calculate loss $\mathcal{L} = (y Q_{nn}(s, a))^2$
- 9. Update $Q_{nn}(s, a)$ using for example 'Adam' (built-in) to minimize loss 10. Every 100 episode copy weights from $Q_{nn}(s, a)$ to $\hat{Q}_{nn}(s, a)$
- 11. Repeat from 3. until convergence

Slide 36 Assignments

Complete the classes for Q-learning and Deep Q-networks in agentClass.py

Address the following tasks

- 1.a) [3p] Use Q-learning to train an artificial player on deterministic tile sequence. Use greedy policy.
- 1.b) [1p] Same as 1.a) with ε greedy policy.
- 1.c) [1p] Same as 1.b) with random tile sequence.
- 1.d) [1p] Discuss possibility to scale up method to a larger game board
- 2.a) [4p] Solve task 1.c) using deep Q-networks.
- 2.b) [Optional task, 2p] Solve the problem on larger game board using deep Q-networks