
Slide 1

Introduction to Q-learning and Deep Q-

networks

Homeproblem B: Playing Tetris using

Reinforcement: Learning

Kristian Gustavsson, Department of Physics, University of Gothenburg, Sweden
kristian.gustafsson@physics.gu.se

Advanced machine learning with neural networks

Slide 3

Scheme that uses trial and error to find optimal strategies to achieve a
predetermined task.

Learning uses a reward signal only (no supervisor).
Example applications
• Gaming strategies
• Control theory
• Industrial optimizations
• Understanding nature

What is Reinforcement Learning?
Reinforcement Learning: An introduction, Sutton & Barto (2018)
Machine learning with neural networks, Mehlig (2021)

Typical learning framework

Slide 4

Application: Gaming strategies

Learning to play ‘Breakout’

before training

Minih et al, Nature 518 529-533 (2015)

Slide 5

Application: Gaming strategies

Learning to play ‘Breakout’

before training during training

Minih et al, Nature 518 529-533 (2015)

Slide 6

Application: Gaming strategies

Learning to play ‘Breakout’

before training during training after training

Agent The player
Environment The game (and player)
States Four most recent game images
Actions Joystick direction
Reward Increment in game score

Minih et al, Nature 518 529-533 (2015)

Slide 7 Silver et al, Nature 529 484-489 (2016)
Silver et al, Nature 550 354-359 (2017)Application: Gaming strategies

Learning to play ‘Go’

Agents Both players
Environment The game (and players)
States Positions of game markers
Actions Place new game marker
Reward + on win; – on lose

Top view

Slide 8

Application: Control theory

Helicopter aerobatics

Abbeel, Coates & Ng, IJRR (2010)

Agent The helicopter operator
Environment The helicopter and the surroundings
States Position, orientation, velocity, and angular velocity
Actions Change main rotor tilt or angle of attack, change tail rotor thrust
Reward Penalty for deviations from target trajectory

Slide 10

Application: Control theory
Kiran et al, IEEE Transactions on Intelligent Transportation Systems (2021)

Decision making and planning in self-driving cars

Agent The driver
Environment The car and the surroundings
States Position and velocity. Scene representation.
Actions Steering, accelerating, braking. Control blinkers, lights, horn etc.
Reward + for following road and reaching target; Neg. for collision or crash

Slide 11

Application: Industrial optimizations
Li et al, IEEE Transactions on Cybernetics (2020)

Agent Controller of cooling system
Environment Data center
States Workload and ambient temperature
Actions Control cooling system
Reward Neg. for power usage or outlet temperature outside specified range

Reducing cooling energy consumption by 40% in Google servers

Slide 12

Application: Understanding nature

Agent Swimmer
Environment Turbulent flow
States Flow properties
Actions Swimming behavior
Reward Spend little energy, swimming in target direction

Swimming strategies in turbulent flows

Verma et al, PNAS 115, 5849–5854 (2018) Colabrese et al, PRL 118, 158004 (2017)

Slide 13

0 0 0 0

0 0 0 0

Example: Swimming against the flow

• States Flow regions 1, 2, 3 and 4

• Actions

• Move one state right

• Move one state left

• Rewards

• 0 for moving one state left

• -1 for state 1 to state 2

• -1 for state 2 to state 3

• +10 for state 3 to state 4

• Q-table (stores experience)

state

action

Q-table

1 2 3 4

1 2 3 4

-1 +10-1

Slide 14

0 0 0 0

0 0 0 0

-1 0 0 0

0 0 0 0

r=0

Example: Swimming against the flow

Choose ‘greedy’ action

action

Agent

Environment

state

reward

s=1 a=

r=-1

Update Q-table

s=2

The scheme gets stuck at state 1

=> Need to add exploration

Q-table

state

action

1 2 3 4

1 2 3 4

-1 +10-1

Slide 15

-1 0 0 0

0 0 0 0

-1 -1 0 0

0 0 0 0

-1 -1 10 0

0 0 0 0

s=4 (terminal)

r=-1r=10

s=2

Example: Swimming against the flow

Choose ‘ -greedy’ action

action

Agent

Environment

state

reward

s=1 a=

Update Q-table

probability probability

s=3

state

action

Q-table

1 2 3 4

Exploration => all states are reached.

But Q-table does not give a good strategy.

=> Need to improve update of Q

1 2 3 4

-1 +10-1

Slide 16

-1 -1 10 0

0 0 0 0

-1 9 10 0

0 0 0 0

8 9 10 0

0 0 0 0

s=2 (s’=3)s=1 (s’=2)

r=-1

Example: Swimming against the flow

action

Agent

Environment

state

reward

a=

Update Q-table (Q-learning)

here is the next state. Q-table gives successful strategy

Choose ‘ -greedy’ action

probability probability

state

action

Q-table

1 2 3 4

1 2 3 4

-1 +10-1

Slide 17

Example: Zermelo’s problem

• Navigation from point A to point B in a background flow

• Constant swimming speed

• How to choose swimming direction?

Zermelo, Z. Angew. Math. Mech. 11, 114–124 (1931); Biferale et al, Chaos 29, 103138 (2019)

A

B

Slide 18

Example: Zermelo’s problem

• Naive approach: always swim towards the target

A

B

Flow speed

Zermelo, Z. Angew. Math. Mech. 11, 114–124 (1931); Biferale et al, Chaos 29, 103138 (2019)

Slide 19

Example: Zermelo’s problem (Q-learning)

States Actions Rewards

Flow grid Swim direction - For state update/crossing bounds

+ For moving towards/reaching target

Learning rate :

Zermelo, Z. Angew. Math. Mech. 11, 114–124 (1931); Biferale et al, Chaos 29, 103138 (2019)

Flow speed

Slide 20

Example: Zermelo’s problem (Q-learning)

Learning rate :

Zermelo, Z. Angew. Math. Mech. 11, 114–124 (1931); Biferale et al, Chaos 29, 103138 (2019)

Flow speed

States Actions Rewards

Flow grid Swim direction - For state update/crossing bounds

+ For moving towards/reaching target

Slide 21

Summary of Q-learning Exploration rate

Learning rate

-greedy policy

probability probability

Use Q-table to store experience (expected future reward)

Slide 22

(, , ,)

Home problem B: Introduction
Task To learn to play simplified Tetris

Reward is given for completing rows

Canvas/files/Homeworks/HW B Kristian/HomeworkB_RL.pdf

Tile set

Slide 23

Home problem B: Getting started
• Download the following files

▪ Canvas/files/Homeworks/HW B Kristian/tetris.py
▪ Canvas/files/Homeworks/HW B Kristian/gameboardClass.py
▪ Canvas/files/Homeworks/HW B Kristian/agentClass.py

• Make sure you have all required packages installed
▪ numpy
▪ pygame
▪ h5py
▪ torch/tensorflow

• Run tetris.py
▪ Use original parameters to test game
▪ Set human_player=0 and param_set to one of PARAM_TASK1a,

PARAM_TASK1b, PARAM_TASK1c, PARAM_TASK1d, PARAM_TASK2a
(and optional PARAM_TASK2b) to address the corresponding task
in HomeworkB_RL.pdf

• Complete the code in agentClass.py to address the tasks in
HomeworkB_RL.pdf

Canvas/files/Homeworks/HW B Kristian/HomeworkB_RL.pdf

Slide 24

(, , ,)

Home problem B: Discussion

Agent The player
Environment The game (and player)
States ???
Actions ???
Reward + for completing rows, - for game over

Think about/Discuss with your neighbors
What are possible choices of states and actions?
What is good/bad with different choices of states and actions?

Tile set

Slide 25

Home problem B: Actions
Use all allowed ways to place a tile as actions
• Tile orientation
• Horizontal position of left tile edge

Example has 3 actions:

Example has 7 actions:

has 12 actions and has 6 actions

Canvas/files/Homeworks/HW B Kristian/HomeworkB_RL.pdf

Slide 26

Home problem B: States
States that should be used are a combination of the following
• Tile identifier of tile to be placed

• Binary matrix representation of game board occupation
Example

Tile identifier 0 1 2 3

Game board Matrix representation

Canvas/files/Homeworks/HW B Kristian/HomeworkB_RL.pdf

Slide 27

Home problem B: Reinforcement learning

Start
here

Reinforcement learning algorithms aim to find strategy/policy (choice of
action given state) that maximizes long term reward.

Action Choose
tile orientation and
position according
to strategy (policy)

Reward
By completing rows
(used to refine strategy)

State Current tile
identifier and game-
board occupancy

Agent

Environment

Sutton & Barto (2018), Mehlig (2021)

Repeat until game over or a predefined number of moves (episodic task)

New state

Slide 28

Optimal policy in Markovian systems
Policy Method of choosing given

Defined as probability
Examples
• Always choose the same action :

• Choose action randomly: with

• Use the optimal policy:

Goal Find => optimal policy

Brute force Find by evaluating of all policies

Problem: different policies if states and actions

Sutton & Barto (2018), Mehlig (2021)

where

and is the expected future reward
when following the optimal policy.

Slide 29

Optimal policy
Expected future reward

Q-learning algorithm (aims to find approximate)
1. Start with arbitrary Q-table (size)
2. Evaluate initial state (with)
3. Choose action according to policy, e.g. -greedy
4. Apply and evaluate and
5. Update

6. Repeat from 3. until episode is finished
7. Repeat from 2. (keeping) until convergence

Optimal solution using Q-learning
Sutton & Barto (2018), Mehlig (2021)

Slide 30

Q-learning Example 1
• First time state is encountered

Choose random action on tie

• Second time is encountered

Choose or randomly

• Third time is encountered action

state

Chosen action

Game over
Reward

Chosen action

Two lines completed
Reward

(assume)

Slide 31

Q-learning Example 2
• First time state is encountered

Choose random action on tie

• Second time is encountered

Problem action is better in the long run

Solution Add exploration, e.g. -greedy policy

state

Chosen action

One line is completed
Reward

action

action

Slide 32

Optimal solution using Deep Q-networks
Idea Replace Q-table by deep neural network

Policy

, episode

Sutton & Barto (2018), Lapan (2020)

Slide 33

Minimize
for transitions

Loss function

Problem 1
Data is not independent and identically distributed (needed for optimizing
the loss function)
Solution
Use ‘experience replay buffer’ containing last state transitions

Optimal solution using Deep Q-networks
Sutton & Barto (2018), Lapan (2020)

Experience buffer Mini batch

Choose
transitions
randomly

Optimize the loss
function for the mini
batch data

Updated network

Slide 34

Minimize
for transitions

Loss function

Problem 2
Potential instability due to ‘bootstrapping’: we use to estimate the
expected future reward when updating .
Solution
Introduce ‘target network’ when estimating future reward

is a copy of , but only occasionally updated.

Optimal solution using Deep Q-networks
Sutton & Barto (2018), Lapan (2020)

Slide 35

Optimal solution using Deep Q-networks
Deep Q-network algorithm
1. Start with arbitrary and identical Q-networks and
2. Evaluate initial state
3. Choose action based on and
4. Apply and evaluate and
5. Store transition in replay buffer
6. Sample mini-batch of transitions from the replay buffer
7. For each transition in the mini-batch, use to calculate target

value: if is terminal,
otherwise.

8. Calculate loss
9. Update using for example ‘Adam’ (built-in) to minimize loss
10. Every 100 episode copy weights from to
11. Repeat from 3. until convergence

Sutton & Barto (2018), Lapan (2020)

Slide 36

Assignments
Complete the classes for Q-learning and Deep Q-networks in agentClass.py

Address the following tasks
• 1.a) [3p] Use Q-learning to train an artificial player on deterministic tile

sequence. Use greedy policy.
• 1.b) [1p] Same as 1.a) with - greedy policy.
• 1.c) [1p] Same as 1.b) with random tile sequence.
• 1.d) [1p] Discuss possibility to scale up method to a larger game board

• 2.a) [4p] Solve task 1.c) using deep Q-networks.
• 2.b) [Optional task, 2p] Solve the problem on larger game board using

deep Q-networks

	Slide 1: Introduction to Q-learning and Deep Q-networks Homeproblem B: Playing Tetris using Reinforcement: Learning
	Slide 3: What is Reinforcement Learning?
	Slide 4: Application: Gaming strategies
	Slide 5: Application: Gaming strategies
	Slide 6: Application: Gaming strategies
	Slide 7: Application: Gaming strategies
	Slide 8: Application: Control theory
	Slide 10: Application: Control theory
	Slide 11: Application: Industrial optimizations
	Slide 12: Application: Understanding nature
	Slide 13: Example: Swimming against the flow
	Slide 14: Example: Swimming against the flow
	Slide 15: Example: Swimming against the flow
	Slide 16: Example: Swimming against the flow
	Slide 17: Example: Zermelo’s problem
	Slide 18: Example: Zermelo’s problem
	Slide 19: Example: Zermelo’s problem (Q-learning)
	Slide 20: Example: Zermelo’s problem (Q-learning)
	Slide 21: Summary of Q-learning
	Slide 22: Home problem B: Introduction
	Slide 23: Home problem B: Getting started
	Slide 24: Home problem B: Discussion
	Slide 25: Home problem B: Actions
	Slide 26: Home problem B: States
	Slide 27: Home problem B: Reinforcement learning
	Slide 28: Optimal policy in Markovian systems
	Slide 29: Optimal solution using Q-learning
	Slide 30: Q-learning Example 1
	Slide 31: Q-learning Example 2
	Slide 32: Optimal solution using Deep Q-networks
	Slide 33: Optimal solution using Deep Q-networks
	Slide 34: Optimal solution using Deep Q-networks
	Slide 35: Optimal solution using Deep Q-networks
	Slide 36: Assignments

