
3rd Lecture: 20/1

Definition 3.1. Let k ∈ Z+. A sequence (an)
∞
n=0 of complex numbers is said to satisfy

a recurrance relation of order k if there exists a function f : Ck → C such that, for all

n ∈ N,

an+k = f(an+k−1, an+k−2, . . . , an). (3.1)

Observe that a sequence satisfying (3.1) is completely determined by the values

a0, a1, . . . , ak−1.

Remark 3.2. It will sometimes be convenient to index sequences from a different start-

ing point than n = 0. We will adjust the starting index in the text below as the situation

demands without further comment.

Two basic issues arise in the study of recursively defined sequences:

The Combinatorial Problem. The function f may not be given, and the first step

is to find it. This usually involves some kind of “combinatorial reasoning”.

The Algebraic Problem. If possible, solve the recurrence (3.1) to find an “explicit

formula” for an as a function of n. This is a special case of the computational problem

of computing the elements of the sequence as efficiently as possible. The recursion

itself leads to relatively efficient computation - just write a program with a loop. But

by an “explicit formula” we have in mind something even better. Moreover, for many

applications it may suffice to be able to make a good estimate of an for large n, and an

explicit formula may give this insight directly, requiring only minimal computation.

Here is a very simple example to illustrate:

Example 3.3. Let an denote the number of subsets of an n-element set, say {1, 2, . . . , n}
WLOG. Clearly a0 = 1, since only the empty subset occurs. Moreover, an+1 = 2an.

For among the subsets of {1, 2, . . . , n+ 1} we can distinguish two types: those which

contain n+1 and those which don’t. Those of each type are in 1-1 correspondence with

subsets of {1, 2, . . . , n}, hence the recursion.

So the sequence (an)
∞
n=0 is defined recursively by

a0 = 1, an+1 = f(an), where f(x) = 2x.

Here the algebraic problem is very simple, we can immediately see that an = 2n. Note

that this explicit formula immediately tells us the order of magnitude of an for any par-

ticular n, namely 2n = 10n log10 2 ≈ 100.3n.

Just as, in general, very few algebraic equations can be solved exactly, there are very

few functions f for which (3.1) can be solved to yield an explicit formula for an. Fortu-

nately, those for which an exact solution procedure exists are also those which tend to

arise most commonly. We will in this course focus mostly1 on linear recurrences.

1though not entirely, see the discussion of Catalan numbers in Lecture x.
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Definition 3.4. The sequence (an)
∞
n=0 is said to satisfy a homogeneous linear recur-

rence (HLR) if the function f in (3.1) is homogeneous and linear, by which we mean

that there exist constants c1, c2, . . . , ck such that f(x1, x2, . . . , xk) =
∑k

i=1 cixi.

Homogeneous linear recurrences can always be solved explicitly, modulo solving poly-

nomial equations. Before presenting the formal result we will work through an example

and show how things work. Note that Example 3.3 was already a simple example of a

HLR.

Example 3.5. Let an denote the number of n-bit binary strings which don’t contain

any consecutive zeroes. We can first check directly that

a0 = 1: the empty string

a1 = 2: 0 or 1

a2 = 3: can’t have 00

a3 = 5: can’t have 000, 001 or 100.

Already at this stage one might guess that

∀n ∈ N : an+2 = an+1 + an. (3.2)

The “combinatorial problem” is to prove this. We do so by considering a sequence of

length n+ 2 and two cases:

Case 1: It starts with a 0. Then the second bit must be 1. The remaining n bits satisfy

no other conditions than those initially posed, namely there can’t be conscutive zeroes.

Hence there are an possibilities for the remaining bits.

Case 2: It starts with a 1. Then there is no extra condition on the second bit, and

the remaining n+1 bits satisfy the same conditions as at the outset. There are thus an+1

possible sequences.

Since Cases 1 and 2 are obviously disjoint and exhaust all possibilities, we have by

AP proven (3.2).

We now turn to the “algebraic problem” of finding an explicit formula for an. Formally,

let

l∞ := {(xn)
∞
n=0 : xn ∈ C}.

In words, l∞ is the vector space of all infinite sequences of complex numbers2. It is

obviously an infinite-dimensional vector space (in fact, the dimension is uncountable -

can you prove this ?). Now let

V = {(xn)
∞
n=0 ∈ l∞ : xn+2 = xn+1 + xn ∀n ∈ N}. (3.3)

Firstly, I claim that V is a subspace of l∞ - indeed this is equivalent to the fact that the

recurrence is a HLR. The proof is simple, but let me give it for the sake of completeness.

2The notation is standard in functional analysis.
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To show that V is a subspace, we must show that it is closed under vector addition and

scalar multiplication.

Closure under addition: Let x = (xn) and y = (yn) be elements of V , thus xn+2 =
xn+1 + xn and yn+2 = yn+1 + yn. Let z = x+ y. Then

zn+2
def
= xn+2 + yn+2 = (xn+1 + xn) + (yn+1 + yn) =

= (xn+1 + yn+1) + (xn + yn)
def
= zn+1 + zn, v.s.v.

Closure under scalar multiplication: Let x = (xn) ∈ V and α ∈ C. Let z := αx.

Then

zn+2
def
= αxn+2 = α(xn+1 + xn) = (αxn+1) + (αxn)

def
= zn+1 + zn, v.s.v.

Next, I claim that dim(V ) = 2. Intuitively, the reason is that a sequence in V is com-

pletely determined by its first two terms. More precisely, there is a vector-space iso-

morphism φ : C2 → V given by

φ((a, b)) = the unique sequence (xn) ∈ V such that x0 = a, x1 = b.

Hence, solving (3.2) reduces to determining a basis for V . At this point one needs to

make an “inspired guess”, and the right guess is to set xn = αn and solve for α ∈ C.

Thus,

xn+2 = xn+1 + xn ⇔ αn+2 = αn+1 + αn.

Now α 6= 0 as otherwise the sequence (xn) would be identically zero and hence not a

basis vector. Thus we can cancel αn from the equation and get an equation which is

independent of n:

α2 = α + 1.

This is called the auxiliary/characteristic equation for the recurrence (3.2). It is a qua-

dratic equation with two roots3,

α1 = γ =
1 +

√
5

2
, α2 =

−1

γ
=

1−
√
5

2
.

Hence a basis for V is given by the two sequences (γn)∞n=1 and ((−1/γ)n)∞n=1, since

whenever α1 6= α2 it is clear that the sequences (αn
1 ) and (αn

2 ) are linearly independent

elements of l∞.

Thus the sequence (an)
∞
n=0 must be a linear combination of these two, i.e.: there exist

constants C1, C2 such that

an = C1 · γn + C2 ·
(−1

γ

)n

.

To determine C1 and C2 we insert the initial conditions n = 0 and n = 1:

n = 0 : a0 = 1 = C1 + C2,

n = 1 : a1 = 2 = C2 · γ + C2 ·
−1

γ
.

3
γ is standard notation for the golden ratio.
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This is just a system of two linear equations in two unknowns, so a standard Gauss

elimination problem, though with somewhat ugly coefficients. You can check that the

solution is C1 = 3− γ, C2 = γ − 2 and hence that the explicit formula for an is

an = (3− γ) · γn + (−1)n · γ − 2

γn
. (3.4)

Remark 3.6. (Fibonacci numbers). Fibonnaci was apparently interested in studying

the reproductive behaviour of rabbits (who are a good choice of species to study for this

purpose because their rate of reproduction is unusually fast for mammals). Fibonacci’s

model makes the following assumptions. Some of them obviously sound stupid on the

level of individual rabbits, but in such cases one should instead imagine that they are

statements about average behaviour in a large population - see the remark below.

ASSUMPTION 1: Rabbits live forever.

ASSUMPTION 2: Rabbits form monogamous pairs.

ASSUMPTION 3: Rabbit pregnancy lasts one month.

ASSUMPTION 4: Rabbit childhood lasts one month.

ASSUMPTION 5: Adult females conceive new offspring as soon as the last batch have

been born.

ASSUMPTION 6: Each conception results in a pair of twins, one of each sex.

Remark: Assumptions 3-6 should be thought of as representing average behaviour, in

which case Assumption 2 becomes superfluous. Assumption 1 is, however, a serious

restriction and obviously implies that the model is unrealistic over longer time periods.

Hoever, one can still consider it as a first step in trying to understand how quickly a

population of rabbits will proliferate over shorter time scales.

Suppose we begin with a single pair of newborn rabbits. For each n ≥ 0, let fn de-

note the number of rabbit pairs living after n months. Thus f0 = 1 by assumption.

Also, f1 = 1 since after one month the newborn pair will have grown up but not yet

produced any offspring. Now I claim that, for all n ∈ N,

fn+2 = fn+1 + fn. (3.5)

To see this, first write fn = vn + bn, where vn is the number of adult pairs after n − 1
months and bn is the number of newborn pairs at this time. Then observe that

(i) vn+2 = fn+1 since every rabbit which was alive one month previously will now

be an adult,

(ii) bn+2 = fn since only those rabbit pairs which were alive two months previously

will have produced offspring in the previous month, since they first needed to become

adults the month before.

Then (3.5) follows from (i) and (ii). To summarise, the sequence (fn)
∞
n=0 of Fibonacci

numbers is defined by the recurrence

f0 = 1, f1 = 1, fn+2 = fn+1 + fn ∀ n ∈ N. (3.6)
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Comparing with Example 3.5, we see that fn = an−1 for all n ≥ 1. In particu-

lar, as n → ∞, since | − 1/γ| < 1 it follows from (3.4) that fn = C · γn + o(1),

C = 3−γ

γ
= · · · =

√
5(3−

√
5)

2
. In particular, the Fibonacci numbers grow exponentially

with exponent γ.

Given a HLR of degree k, the corresponding vector space V will be k-dimensional.

The auxiliary equation will be a polynomial equation of degree k so, if we’re lucky, it

will have k distinct roots in the complex numbers4, which will give us a complete basis

of k vectors for V . The only thing that can possibly go wrong is that the auxiliary equa-

tion has one or more repeated roots. However, this situation can be handled. Before

presenting the general result, we do an example:

Example 3.7. Let’s solve the recurrence

u0 = 1, u1 = 2, un+2 = 6un+1 − 9un ∀ n ≥ 0.

The auxiliary equation is α2 − 6α + 9 = 0, which has a repeated root α1, 2 = 3. Hence

the sequence (3n) is one basis vector. It turns out that the second one is given by the

sequence (n · 3n). Hence, there exist constants C1, C2 such that

un = (C1 + C2n)3
n.

We insert the initial conditions

n = 0 : u0 = 1 = C1, n = 1 : 2 = u1 = 3(C1 + C2) ⇒ C2 = −1/3.

Hence, un =
(

1− n
3

)

3n.

Theorem 3.8. Suppose the sequence (an)
∞
n=0 satisfies the HLR

an+k =
k

∑

i=1

cian+k−i ∀n ≥ 0. (3.7)

If α is a root of multiplicity l of the auxiliary equation

xk =
k

∑

i=1

cix
k−i (3.8)

then, for any polynomial p(x) ∈ C[x] of degree l−1, an = p(n)·αn is a solution of (3.7).

Hence, if α1, . . . , αt are all the distinct roots of (3.8), with multiplicities l1, . . . , lt, then

the general solution of (3.7) is given by

an =
t

∑

i=1

pi(n) · αn
i , (3.9)

where pi(x) is a polynomial of degree li.

We’ll give the proof next time.

4Recall the Fundamental Theorem of Algebra, which states that every polynomial with complex co-

efficients can be completely factorised in C - the technical terminology being that C is an algebraically

closed field.


