
8th Lecture: 3/2

Binary Operations. This is prerequisite material, but I’ll remind you of the most es-

sential things just in case. For further reading, see the file on the Canvas page.

Definition 8.1. A binary operation on a set A is a function

∗ : A× A → A.

Notation 8.2. ∗(a1, a2) is usually denoted a1 ∗ a2. The default name for a binary op-

eration is “multiplication”, even though ordinary multiplication of (complex) numbers

is just one example (see Example 8.11) of a binary operation. Thus, a1 ∗ a2 is read, by

default, as “a1 times a2”.

Definition 8.3. Let ∗ be a binary operation on a set A. We say that ∗ is commuta-

tive if

a1 ∗ a2 = a2 ∗ a1 ∀ a1, a2 ∈ A.

Definition 8.4. Let ∗ be a binary operation on a set A. We say that ∗ is associative if

(a1 ∗ a2) ∗ a3 = a1 ∗ (a2 ∗ a3) ∀ a1, a2, a3 ∈ A.

Definition 8.5. Let ∗ be a binary operation on a set A. An element e ∈ A is said to be

an identity for ∗ if

a ∗ e = e ∗ a = a ∀ a ∈ A.

Proposition 8.6. Let ∗ be a binary operation on a set A. An identity for ∗, if it exists, is

unique.

PROOF: Let e and f be identities for ∗ and consider e ∗ f . Since e is an identity,

the product must be f . On the other hand, since f is an identity, the product must be e.

Hence e = f , v.s.v.

Notation 8.7. When we use the default term “multiplication” for a binary operation

with identity, we by default write 1 for the latter.

Definition 8.8. Let ∗ be a binary operation with identity 1 on a set A, and let a ∈ A.

An element b ∈ A is said to be an inverse of a (with respect to ∗) if

a ∗ b = b ∗ a = 1.

Proposition 8.9. Let ∗ be an associative binary operation with identity 1 on a set A,

and let a ∈ A. An inverse for a, if it exists, is unique.

PROOF: Suppose b and c are both inverses of a. Thus

a ∗ b = b ∗ a = a ∗ c = c ∗ a = 1.

It follows that (note the use of associativity !)

b = b ∗ 1 = b ∗ (a ∗ c)
assoc.
= (b ∗ a) ∗ c = 1 ∗ c = c, v.s.v.

Example 8.10. Ordinary addition + is a commutative and associative binary operation

on A = Z+. To get an identity, we need to add zero, thus extend to A = Z+∪{0} = N.
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In order for every element to have an inverse, we need to add all negative integers, thus

extend to A = Z. We can also consider + as a binary operation on any of the sets Q, R
or C, for example.

Example 8.11. Ordinary multiplication × is a commutative and associative binary

operation on A = Z+. We already have an identity, namely 1. But in order for every el-

ement to have an inverse, we need to add all non-zero quotients of integers, thus extend

to A = Q× = Q\{0}. We can also consider × as a binary operation on any of the sets

R× = R\{0} or C× = C\{0}, for example.

Example 8.12. Subtraction − and division / are (silly) examples of non-commutative

and non-associative binary operations (on suitably chosen sets of numbers):

a− b 6= b− a,

(a− b)− c = a− b− c 6= a− (b− c) = a− b+ c,

a/b 6= b/a,

(a/b)/c = a/bc 6= (a/b)/c = ac/b.

Example 8.13. For n ∈ Z+, let Mn(R) denote the set of all n × n matrices with real

entries. Matrix multiplication is a binary operation on this set. As you have learned in

linear algebra,

(i) matrix multiplication is associative

(ii) matrix multiplication is non-commutative for all n ≥ 2
(iii) the matrix In = diag(1, 1, . . . , 1) is an identity

(iv) a matrix M ∈ Mn(R) has an inverse if and only if det(M) 6= 0.

One denotes

GLn(R) = Mn(R)
× = {M ∈ Mn(R) : det(M) 6= 0}

for the so-called general linear group of order n over R.

Recall from linear algebra that each matrix A ∈ Mn(R) corresponds to a so-called lin-

ear transformation on Rn, that is, a function fA : Rn → Rn given by fA(x) = Ax. Ma-

trix multiplication thereby corresponds to composition of linear transformations, since

(fA ◦ fB)(x) = A(fB(x)) = A(Bx)
assoc.
= (AB)x = fAB(x).

Hence, Example 8.13 is just a special case of

Example 8.14. Let S be any set and let A = AS be the set of all functions from S
to itself. Composition of functions is a binary operation on A. Note that the standard

way to denote composition of functions is with the “after” symbol ◦. Thus f ◦ g means

that one applies the function g first: (f ◦ g)(s) = f(g(s)). With this convention:

(i) ◦ is always associative

((f ◦ g) ◦ h)(s) = (f ◦ (g ◦ h))(s) = f(g(h(s))).
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(ii) ◦ is non-commutative whenever |S| > 1. Let’s take |S| = 2, say S = {1, 2}.

There are 22 = 4 functions from S to itself, namely

f1(1) = 1, f1(2) = 1; f2(1) = 2, f2(2) = 2;

f3(1) = 1, f3(2) = 2; f4(1) = 2, f4(2) = 1.

We see, for example, that f1 ◦ f2 6= f2 ◦ f1 since f1 ◦ f2 = f1 and f2 ◦ f1 = f2.

(iii) The identity function 1S(s) = s ∀ s ∈ S is always an identity for ◦.

(iv) A function f : S → S has an inverse if and only if f is bijective, hence a

permutation of S.

Groups. The concept of a group is probably the single most important concept in mod-

ern algebra. The definition (see below) imposes just enough structure to lead to a rich

theory. You can find many books in the library just on the subject of Group theory.

Definition 8.15. Let G be a set and ∗ a binary operation on G. The pair (G, ∗) is

called a group if

(i) ∗ is associative

(ii) there exists an identity for ∗ in G
(iii) every element g ∈ G has an inverse w.r.t. ∗.

When the binary operation ∗ is understood, one usually just writes G rather than

(G, ∗) to denote the group.

Definition 8.16. Let (G, ∗) be a group. If ∗ is commutative, we say that G is an

abelian group. If ∗ is not commutative, we say G is non-abelian.

Notation 8.17. In a non-abelian group it is conventional to always use multiplicative

notation. Hence one denotes the identity element as 1, denotes the inverse of g as g−1

and, in general, writes gh for g ∗ h.

In an abelian group it is conventional to always use additive notation. Hence one

denotes the identity element as 0, denotes the inverse of g as −g and, in general, writes

g + h for g ∗ h.

Now let’s revisit the examples from above.

Example 8.10+ (Z, +) is an abelian group.

Example 8.11+ (Q×, ×) is an abelian group.

Example 8.13+ GLn(R) is a non-abelian group, under matrix multiplication, for each

n ≥ 2. Note, by the way, that Mn(R) is an abelian group under matrix addition.

Example 8.14+ For a set S, let GS be the set of all permutations of S. Then GS is

a group under composition of functions. Note that, if S is a finite set, then so is GS
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and |GS| = |S| !. In particular, one denotes by Sn the group of all permutations of

{1, 2, . . . , n}. It is called the symmetric group of order n. We have |Sn| = n!.
Sn is non-abelian for all n ≥ 3. For n = 3, the 3! = 6 elements of S3 can be

visualised as the symmetries of an equilateral triangle, see Figure 8.1. Each geometri-

cal transformation corresponds to a function on the set {1, 2, 3}, by considering what

happens to the three vertices of the triangle. Indeed, there are two ways to translate a

geometrical transformation to a function:

f 1(i) = the vertex to which i is moved

f 2(i) = the vertex which replaces i.

It is clear that, as functions on {1, 2, 3}, f 1 and f 2 will be each others’ inverses. In

Figure 8.1, I have chosen the first option for the translation.

Important Remark 8.18. When using default multiplicative notation in an abelian

group G, the convention is to read products g1g2 “from left to right”. On the other hand,

when the underlying binary operation is composition of functions, the standard ◦ nota-

tion implies that one should read “from right to left”. 1 One must remember this when

one uses the group notation and the group elements represent permutations of a set.2

When the group elements can be represented geometrically, as in Example 8.14+,

there is the additional complication, as mentioned above, that there are two ways to

translate from the geometrical transformation to a permutation of a set. One of these is

the inverse of the other, which is the same thing as “changing the order of multiplica-

tion” since (gh)−1 = h−1g−1. The important thing is to always be consistent, whatever

notation one chooses. In Figure 8.1, the group notation corresponds to performing the

geometrical transformations in reverse order. For example:

f5 = f4f2 = f2 ◦ f4,

T5 = T4 ◦ T2.

1This is a special case of the more general fact that, if ∗ is a binary operation on a set A, then so is the

operation ◦ given by a1 ◦ a2 = a2 ∗ a1. The operation ◦ will satisfy any of the properties in Definitions

8.3, 8.4, 8.5, 8.8 if and only if ∗ does so.
2In fact, there is a general theorem which says that any group is a group of permutations on some set.

See Lecture X.


