Binary Operations. This is prerequisite material, but I'll remind you of the most essential things just in case. For further reading, see the file on the Canvas page.

Definition 8.1. A binary operation on a set $A$ is a function

$$
*: A \times A \rightarrow A .
$$

Notation 8.2. $*\left(a_{1}, a_{2}\right)$ is usually denoted $a_{1} * a_{2}$. The default name for a binary operation is "multiplication", even though ordinary multiplication of (complex) numbers is just one example (see Example 8.11) of a binary operation. Thus, $a_{1} * a_{2}$ is read, by default, as " $a_{1}$ times $a_{2}$ ".

Definition 8.3. Let $*$ be a binary operation on a set $A$. We say that $*$ is commutative if

$$
a_{1} * a_{2}=a_{2} * a_{1} \quad \forall a_{1}, a_{2} \in A
$$

Definition 8.4. Let $*$ be a binary operation on a set $A$. We say that $*$ is associative if

$$
\left(a_{1} * a_{2}\right) * a_{3}=a_{1} *\left(a_{2} * a_{3}\right) \forall a_{1}, a_{2}, a_{3} \in A
$$

Definition 8.5. Let $*$ be a binary operation on a set $A$. An element $e \in A$ is said to be an identity for $*$ if

$$
a * e=e * a=a \quad \forall a \in A
$$

Proposition 8.6. Let $*$ be a binary operation on a set A. An identity for $*$, if it exists, is unique.

Proof: Let $e$ and $f$ be identities for $*$ and consider $e * f$. Since $e$ is an identity, the product must be $f$. On the other hand, since $f$ is an identity, the product must be $e$. Hence $e=f$, v.s.v.

Notation 8.7. When we use the default term "multiplication" for a binary operation with identity, we by default write 1 for the latter.

Definition 8.8. Let $*$ be a binary operation with identity 1 on a set $A$, and let $a \in A$. An element $b \in A$ is said to be an inverse of $a$ (with respect to $*$ ) if

$$
a * b=b * a=1 .
$$

Proposition 8.9. Let $*$ be an associative binary operation with identity 1 on a set $A$, and let $a \in A$. An inverse for $a$, if it exists, is unique.

Proof: Suppose $b$ and $c$ are both inverses of $a$. Thus

$$
a * b=b * a=a * c=c * a=1 .
$$

It follows that (note the use of associativity !)

$$
b=b * 1=b *(a * c) \stackrel{\text { assoc. }}{=}(b * a) * c=1 * c=c, \quad \text { v.s.v. }
$$

Example 8.10. Ordinary addition + is a commutative and associative binary operation on $A=\mathbb{Z}_{+}$. To get an identity, we need to add zero, thus extend to $A=\mathbb{Z}_{+} \cup\{0\}=\mathbb{N}$.

In order for every element to have an inverse, we need to add all negative integers, thus extend to $A=\mathbb{Z}$. We can also consider + as a binary operation on any of the sets $\mathbb{Q}, \mathbb{R}$ or $\mathbb{C}$, for example.

Example 8.11. Ordinary multiplication $\times$ is a commutative and associative binary operation on $A=\mathbb{Z}_{+}$. We already have an identity, namely 1 . But in order for every element to have an inverse, we need to add all non-zero quotients of integers, thus extend to $A=\mathbb{Q}^{\times}=\mathbb{Q} \backslash\{0\}$. We can also consider $\times$ as a binary operation on any of the sets $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$ or $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$, for example.

Example 8.12. Subtraction - and division / are (silly) examples of non-commutative and non-associative binary operations (on suitably chosen sets of numbers):

$$
\begin{array}{r}
a-b \neq b-a, \\
(a-b)-c=a-b-c \neq a-(b-c)=a-b+c, \\
a / b \neq b / a \\
(a / b) / c=a / b c \neq(a / b) / c=a c / b
\end{array}
$$

Example 8.13. For $n \in \mathbb{Z}_{+}$, let $\mathbb{M}_{n}(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries. Matrix multiplication is a binary operation on this set. As you have learned in linear algebra,
(i) matrix multiplication is associative
(ii) matrix multiplication is non-commutative for all $n \geq 2$
(iii) the matrix $I_{n}=\operatorname{diag}(1,1, \ldots, 1)$ is an identity
(iv) a matrix $M \in \mathbb{M}_{n}(\mathbb{R})$ has an inverse if and only if $\operatorname{det}(M) \neq 0$.

One denotes

$$
\mathrm{GL}_{n}(\mathbb{R})=\mathbb{M}_{n}(\mathbb{R})^{\times}=\left\{M \in \mathbb{M}_{n}(\mathbb{R}): \operatorname{det}(M) \neq 0\right\}
$$

for the so-called general linear group of order $n$ over $\mathbb{R}$.
Recall from linear algebra that each matrix $A \in \mathbb{M}_{n}(\mathbb{R})$ corresponds to a so-called linear transformation on $\mathbb{R}^{n}$, that is, a function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $f_{A}(\boldsymbol{x})=A \boldsymbol{x}$. Matrix multiplication thereby corresponds to composition of linear transformations, since

$$
\left(f_{A} \circ f_{B}\right)(\boldsymbol{x})=A\left(f_{B}(\boldsymbol{x})\right)=A(B \boldsymbol{x}) \stackrel{\text { assoc. }}{=}(A B) \boldsymbol{x}=f_{A B}(\boldsymbol{x})
$$

Hence, Example 8.13 is just a special case of
Example 8.14. Let $S$ be any set and let $\mathcal{A}=\mathcal{A}_{S}$ be the set of all functions from $S$ to itself. Composition of functions is a binary operation on $\mathcal{A}$. Note that the standard way to denote composition of functions is with the "after" symbol $\circ$. Thus $f \circ g$ means that one applies the function $g$ first: $(f \circ g)(s)=f(g(s))$. With this convention:
(i) $\circ$ is always associative

$$
((f \circ g) \circ h)(s)=(f \circ(g \circ h))(s)=f(g(h(s))) .
$$

(ii) $\circ$ is non-commutative whenever $|S|>1$. Let's take $|S|=2$, say $S=\{1,2\}$. There are $2^{2}=4$ functions from $S$ to itself, namely

$$
\begin{array}{ll}
f_{1}(1)=1, f_{1}(2)=1 ; & f_{2}(1)=2, f_{2}(2)=2 \\
f_{3}(1)=1, & f_{3}(2)=2 ;
\end{array} f_{4}(1)=2, f_{4}(2)=1 .
$$

We see, for example, that $f_{1} \circ f_{2} \neq f_{2} \circ f_{1}$ since $f_{1} \circ f_{2}=f_{1}$ and $f_{2} \circ f_{1}=f_{2}$.
(iii) The identity function $1_{S}(s)=s \forall s \in S$ is always an identity for $\circ$.
(iv) A function $f: S \rightarrow S$ has an inverse if and only if $f$ is bijective, hence a permutation of $S$.

Groups. The concept of a group is probably the single most important concept in modern algebra. The definition (see below) imposes just enough structure to lead to a rich theory. You can find many books in the library just on the subject of Group theory.

Definition 8.15. Let $G$ be a set and $*$ a binary operation on $G$. The pair $(G, *)$ is called a group if
(i) $*$ is associative
(ii) there exists an identity for $*$ in $G$
(iii) every element $g \in G$ has an inverse w.r.t. *.

When the binary operation $*$ is understood, one usually just writes $G$ rather than $(G, *)$ to denote the group.

Definition 8.16. Let $(G, *)$ be a group. If $*$ is commutative, we say that $G$ is an abelian group. If $*$ is not commutative, we say $G$ is non-abelian.

Notation 8.17. In a non-abelian group it is conventional to always use multiplicative notation. Hence one denotes the identity element as 1 , denotes the inverse of $g$ as $g^{-1}$ and, in general, writes $g h$ for $g * h$.

In an abelian group it is conventional to always use additive notation. Hence one denotes the identity element as 0 , denotes the inverse of $g$ as $-g$ and, in general, writes $g+h$ for $g * h$.

Now let's revisit the examples from above.
Example 8.10+ $(\mathbb{Z},+)$ is an abelian group.
Example 8.11+ $\left(\mathbb{Q}^{\times}, \times\right)$is an abelian group.
Example 8.13+ $\mathrm{GL}_{n}(\mathbb{R})$ is a non-abelian group, under matrix multiplication, for each $n \geq 2$. Note, by the way, that $\mathbb{M}_{n}(\mathbb{R})$ is an abelian group under matrix addition.

Example 8.14+ For a set $S$, let $G_{S}$ be the set of all permutations of $S$. Then $G_{S}$ is a group under composition of functions. Note that, if $S$ is a finite set, then so is $G_{S}$
and $\left|G_{S}\right|=|S|$ !. In particular, one denotes by $S_{n}$ the group of all permutations of $\{1,2, \ldots, n\}$. It is called the symmetric group of order $n$. We have $\left|S_{n}\right|=n!$.
$S_{n}$ is non-abelian for all $n \geq 3$. For $n=3$, the $3!=6$ elements of $S_{3}$ can be visualised as the symmetries of an equilateral triangle, see Figure 8.1. Each geometrical transformation corresponds to a function on the set $\{1,2,3\}$, by considering what happens to the three vertices of the triangle. Indeed, there are two ways to translate a geometrical transformation to a function:
$f^{1}(i)=$ the vertex to which $i$ is moved
$f^{2}(i)=$ the vertex which replaces $i$.
It is clear that, as functions on $\{1,2,3\}, f^{1}$ and $f^{2}$ will be each others' inverses. In Figure 8.1, I have chosen the first option for the translation.

Important Remark 8.18. When using default multiplicative notation in an abelian group $G$, the convention is to read products $g_{1} g_{2}$ "from left to right". On the other hand, when the underlying binary operation is composition of functions, the standard o notation implies that one should read "from right to left". ${ }^{1}$ One must remember this when one uses the group notation and the group elements represent permutations of a set. ${ }^{2}$

When the group elements can be represented geometrically, as in Example 8.14+, there is the additional complication, as mentioned above, that there are two ways to translate from the geometrical transformation to a permutation of a set. One of these is the inverse of the other, which is the same thing as "changing the order of multiplication" since $(g h)^{-1}=h^{-1} g^{-1}$. The important thing is to always be consistent, whatever notation one chooses. In Figure 8.1, the group notation corresponds to performing the geometrical transformations in reverse order. For example:

$$
\begin{aligned}
f_{5}=f_{4} f_{2} & =f_{2} \circ f_{4}, \\
T_{5} & =T_{4} \circ T_{2} .
\end{aligned}
$$

[^0]
[^0]:    ${ }^{1}$ This is a special case of the more general fact that, if $*$ is a binary operation on a set $A$, then so is the operation $\circ$ given by $a_{1} \circ a_{2}=a_{2} * a_{1}$. The operation $\circ$ will satisfy any of the properties in Definitions $8.3,8.4,8.5,8.8$ if and only if $*$ does so.
    ${ }^{2}$ In fact, there is a general theorem which says that any group is a group of permutations on some set. See Lecture X.

