8th Lecture: 3/2

Binary Operations. This is prerequisite material, but I’'ll remind you of the most es-
sential things just in case. For further reading, see the file on the Canvas page.

Definition 8.1. A binary operation on a set A is a function
x: AX A— A

Notation 8.2. x(a;, as) is usually denoted a; * ay. The default name for a binary op-
eration is “multiplication”, even though ordinary multiplication of (complex) numbers
is just one example (see Example 8.11) of a binary operation. Thus, a; * as is read, by
default, as “a; times a,”.

Definition 8.3. Let * be a binary operation on a set A. We say that * is commuta-
tive if
a1 % ag = ag xa; Yap, as € A.
Definition 8.4. Let x be a binary operation on a set A. We say that x is associative if
(a1 * ag) * ag = aj * (ag x az) Vay, az, az € A.

Definition 8.5. Let x be a binary operation on a set A. An element ¢ € A is said to be
an identity for * if
axe=exa=a Yac A.

Proposition 8.6. Let x be a binary operation on a set A. An identity for %, if it exists, is
unique.

PROOF: Let e and f be identities for * and consider e * f. Since e is an identity,
the product must be f. On the other hand, since f is an identity, the product must be e.
Hence e = f, v.s.v.

Notation 8.7. When we use the default term “multiplication” for a binary operation
with identity, we by default write 1 for the latter.

Definition 8.8. Let * be a binary operation with identity 1 on a set A, and let a € A.
An element b € A is said to be an inverse of a (with respect to x) if

axb=bxa=1.

Proposition 8.9. Let x be an associative binary operation with identity 1 on a set A,
and let a € A. An inverse for a, if it exists, is unique.

PROOF: Suppose b and c are both inverses of a. Thus
axb=bxa=axc=cxa=1.
It follows that (note the use of associativity !)
b=bx1=0bx(axc) asg)c.(

Example 8.10. Ordinary addition + is a commutative and associative binary operation

on A = Z,. To get an identity, we need to add zero, thus extend to A = Z, U{0} = N.
1

bxa)xc=1xc=rc, vs.V.
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In order for every element to have an inverse, we need to add all negative integers, thus
extend to A = Z. We can also consider + as a binary operation on any of the sets Q, R
or C, for example.

Example 8.11. Ordinary multiplication X is a commutative and associative binary
operation on A = 7Z, . We already have an identity, namely 1. But in order for every el-
ement to have an inverse, we need to add all non-zero quotients of integers, thus extend
to A = Q* = Q\{0}. We can also consider x as a binary operation on any of the sets
R* = R\{0} or C* = C\{0}, for example.

Example 8.12. Subtraction — and division / are (silly) examples of non-commutative
and non-associative binary operations (on suitably chosen sets of numbers):

a—b#b—a,
(a—b)—c=a—-b—c#a—(b—c)=a—-b+c,
a/b#b/a,

(a/b)/c =a/bc # (a/b)/c = ac/b.
Example 8.13. For n € Z,, let M,,(R) denote the set of all n x n matrices with real

entries. Matrix multiplication is a binary operation on this set. As you have learned in
linear algebra,

(i) matrix multiplication is associative

(i1) matrix multiplication is non-commutative for all n > 2

(iii) the matrix I,, = diag(1, 1, ..., 1) is an identity

(iv) a matrix M € M,,(R) has an inverse if and only if det()) # 0.

One denotes
GL,(R) = M, (R)* = {M € M, (R) : det(M) # 0}

for the so-called general linear group of order n over R.

Recall from linear algebra that each matrix A € M, (R) corresponds to a so-called lin-
ear transformation on R™, that is, a function f4 : R” — R" given by f4(x) = Ax. Ma-
trix multiplication thereby corresponds to composition of linear transformations, since

assoc.
(fao fp)(@) = A(fp(x)) = A(Bx) =" (AB)x = fan(x).

Hence, Example 8.13 is just a special case of

Example 8.14. Let S be any set and let A = Ag be the set of all functions from S

to itself. Composition of functions is a binary operation on 4. Note that the standard

way to denote composition of functions is with the “after” symbol o. Thus f o g means
that one applies the function ¢ first: (f o g)(s) = f(g(s)). With this convention:

(i) o is always associative

((fog)oh)(s)=(folgoh))(s)= flg(h(s))).
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(ii) o is non-commutative whenever |S| > 1. Let’s take |S| = 2, say S = {1, 2}.
There are 22 = 4 functions from S to itself, namely

A =1, 12) =1 f(1) =2, /o(2) =2
f() =1, 5(2)=2; fu(1) =2, fu(2)=1.
We see, for example, that f; o fy # fy 0 f1since f1 o fo = fiand fo0 f1 = fo.

(iii) The identity function 1g(s) = s Vs € S is always an identity for o.

(iv) A function f : S — S has an inverse if and only if f is bijective, hence a
permutation of S.

Groups. The concept of a group is probably the single most important concept in mod-
ern algebra. The definition (see below) imposes just enough structure to lead to a rich
theory. You can find many books in the library just on the subject of Group theory.

Definition 8.15. Let GG be a set and * a binary operation on . The pair (G, *) is
called a group if

(1) * is associative

(ii) there exists an identity for * in G

(iii) every element g € G has an inverse w.r.t. .

When the binary operation * is understood, one usually just writes G rather than
(G, *) to denote the group.

Definition 8.16. Let (G, %) be a group. If x is commutative, we say that G is an
abelian group. If * is not commutative, we say G is non-abelian.

Notation 8.17. In a non-abelian group it is conventional to always use multiplicative
notation. Hence one denotes the identity element as 1, denotes the inverse of g as g~ !
and, in general, writes gh for g x h.

In an abelian group it is conventional to always use additive notation. Hence one
denotes the identity element as 0, denotes the inverse of g as —g and, in general, writes
g + h for g x h.

Now let’s revisit the examples from above.
Example 8.10+ (Z, +) is an abelian group.
Example 8.11+ (Q*, x) is an abelian group.

Example 8.13+ GL,(R) is a non-abelian group, under matrix multiplication, for each
n > 2. Note, by the way, that M, (R) is an abelian group under matrix addition.

Example 8.14+ For a set S, let Gg be the set of all permutations of S. Then Gy is
a group under composition of functions. Note that, if S is a finite set, then so is G'g
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and |Gg| = |S|!. In particular, one denotes by S,, the group of all permutations of
{1, 2, ..., n}. Itis called the symmetric group of order n. We have |S,| = n!.
S,, is non-abelian for all n > 3. For n = 3, the 3! = 6 elements of S; can be

visualised as the symmetries of an equilateral triangle, see Figure 8.1. Each geometri-
cal transformation corresponds to a function on the set {1, 2, 3}, by considering what
happens to the three vertices of the triangle. Indeed, there are two ways to translate a
geometrical transformation to a function:

f1(7) = the vertex to which 7 is moved
f?(i) = the vertex which replaces 1.

It is clear that, as functions on {1, 2, 3}, f! and f? will be each others’ inverses. In
Figure 8.1, I have chosen the first option for the translation.

Important Remark 8.18. When using default multiplicative notation in an abelian
group G, the convention is to read products g; g, “from left to right”. On the other hand,
when the underlying binary operation is composition of functions, the standard o nota-
tion implies that one should read “from right to left”. ! One must remember this when
one uses the group notation and the group elements represent permutations of a set.”

When the group elements can be represented geometrically, as in Example 8.14+,
there is the additional complication, as mentioned above, that there are two ways to
translate from the geometrical transformation to a permutation of a set. One of these is
the inverse of the other, which is the same thing as “changing the order of multiplica-
tion” since (gh)~! = h~'g~!. The important thing is to always be consistent, whatever
notation one chooses. In Figure 8.1, the group notation corresponds to performing the
geometrical transformations in reverse order. For example:

J5s = fafo = fao fu,
T5 :T4OT2.

IThis is a special case of the more general fact that, if * is a binary operation on a set A, then so is the
operation o given by a; o a; = as * a1. The operation o will satisfy any of the properties in Definitions
8.3, 8.4, 8.5, 8.8 if and only if * does so.

’In fact, there is a general theorem which says that any group is a group of permutations on some set.
See Lecture X.



