8th Lecture: 3/2

Binary Operations. This is prerequisite material, but I'll remind you of the most essential things just in case. For further reading, see the file on the Canvas page.

Definition 8.1. A *binary operation* on a set A is a function

$$*: A \times A \to A.$$

Notation 8.2. $*(a_1, a_2)$ is usually denoted $a_1 * a_2$. The default name for a binary operation is "multiplication", even though ordinary multiplication of (complex) numbers is just one example (see Example 8.11) of a binary operation. Thus, $a_1 * a_2$ is read, by default, as " a_1 times a_2 ".

Definition 8.3. Let * be a binary operation on a set A. We say that * is *commutative* if

$$a_1 * a_2 = a_2 * a_1 \ \forall a_1, a_2 \in A$$

Definition 8.4. Let * be a binary operation on a set A. We say that * is associative if

$$(a_1 * a_2) * a_3 = a_1 * (a_2 * a_3) \ \forall a_1, a_2, a_3 \in A.$$

Definition 8.5. Let * be a binary operation on a set A. An element $e \in A$ is said to be an *identity* for * if

$$*e = e * a = a \quad \forall a \in A.$$

Proposition 8.6. Let * be a binary operation on a set A. An identity for *, if it exists, is unique.

PROOF: Let e and f be identities for * and consider e * f. Since e is an identity, the product must be f. On the other hand, since f is an identity, the product must be e. Hence e = f, v.s.v.

Notation 8.7. When we use the default term "multiplication" for a binary operation with identity, we by default write 1 for the latter.

Definition 8.8. Let * be a binary operation with identity 1 on a set A, and let $a \in A$. An element $b \in A$ is said to be an *inverse* of a (with respect to *) if

$$a * b = b * a = 1.$$

Proposition 8.9. Let * be an associative binary operation with identity 1 on a set A, and let $a \in A$. An inverse for a, if it exists, is unique.

PROOF: Suppose *b* and *c* are both inverses of *a*. Thus

$$a * b = b * a = a * c = c * a = 1.$$

It follows that (note the use of associativity !)

 $b=b*1=b*(a*c) \stackrel{\text{assoc.}}{=} (b*a)*c=1*c=c, \ \text{v.s.v.}$

Example 8.10. Ordinary addition + is a commutative and associative binary operation on $A = \mathbb{Z}_+$. To get an identity, we need to add zero, thus extend to $A = \mathbb{Z}_+ \cup \{0\} = \mathbb{N}$.

In order for every element to have an inverse, we need to add all negative integers, thus extend to $A = \mathbb{Z}$. We can also consider + as a binary operation on any of the sets \mathbb{Q} , \mathbb{R} or \mathbb{C} , for example.

Example 8.11. Ordinary multiplication \times is a commutative and associative binary operation on $A = \mathbb{Z}_+$. We already have an identity, namely 1. But in order for every element to have an inverse, we need to add all non-zero quotients of integers, thus extend to $A = \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$. We can also consider \times as a binary operation on any of the sets $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ or $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$, for example.

Example 8.12. Subtraction - and division / are (silly) examples of non-commutative and non-associative binary operations (on suitably chosen sets of numbers):

$$a - b \neq b - a,$$

$$(a - b) - c = a - b - c \neq a - (b - c) = a - b + c,$$

$$a/b \neq b/a,$$

$$(a/b)/c = a/bc \neq (a/b)/c = ac/b.$$

Example 8.13. For $n \in \mathbb{Z}_+$, let $\mathbb{M}_n(\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries. Matrix multiplication is a binary operation on this set. As you have learned in linear algebra,

(i) matrix multiplication is associative

- (ii) matrix multiplication is non-commutative for all $n \ge 2$
- (iii) the matrix $I_n = \text{diag}(1, 1, \dots, 1)$ is an identity
- (iv) a matrix $M \in \mathbb{M}_n(\mathbb{R})$ has an inverse if and only if $\det(M) \neq 0$.

One denotes

$$\operatorname{GL}_n(\mathbb{R}) = \mathbb{M}_n(\mathbb{R})^{\times} = \{ M \in \mathbb{M}_n(\mathbb{R}) : \det(M) \neq 0 \}$$

for the so-called general linear group of order n over \mathbb{R} .

Recall from linear algebra that each matrix $A \in M_n(\mathbb{R})$ corresponds to a so-called *linear transformation on* \mathbb{R}^n , that is, a function $f_A : \mathbb{R}^n \to \mathbb{R}^n$ given by $f_A(x) = Ax$. Matrix multiplication thereby corresponds to composition of linear transformations, since

$$(f_A \circ f_B)(\boldsymbol{x}) = A(f_B(\boldsymbol{x})) = A(B\boldsymbol{x}) \stackrel{\text{assoc.}}{=} (AB)\boldsymbol{x} = f_{AB}(\boldsymbol{x})$$

Hence, Example 8.13 is just a special case of

Example 8.14. Let S be any set and let $\mathcal{A} = \mathcal{A}_S$ be the set of all functions from S to itself. Composition of functions is a binary operation on \mathcal{A} . Note that the standard way to denote composition of functions is with the "after" symbol \circ . Thus $f \circ g$ means that one applies the function g first: $(f \circ g)(s) = f(g(s))$. With this convention:

(i) \circ is always associative

$$((f \circ g) \circ h)(s) = (f \circ (g \circ h))(s) = f(g(h(s))).$$

(ii) \circ is non-commutative whenever |S| > 1. Let's take |S| = 2, say $S = \{1, 2\}$. There are $2^2 = 4$ functions from S to itself, namely

$$f_1(1) = 1, f_1(2) = 1;$$
 $f_2(1) = 2, f_2(2) = 2;$
 $f_3(1) = 1, f_3(2) = 2;$ $f_4(1) = 2, f_4(2) = 1.$

We see, for example, that $f_1 \circ f_2 \neq f_2 \circ f_1$ since $f_1 \circ f_2 = f_1$ and $f_2 \circ f_1 = f_2$.

(iii) The identity function $1_S(s) = s \ \forall s \in S$ is always an identity for \circ .

(iv) A function $f : S \to S$ has an inverse if and only if f is bijective, hence a permutation of S.

Groups. The concept of a group is probably the single most important concept in modern algebra. The definition (see below) imposes just enough structure to lead to a rich theory. You can find many books in the library just on the subject of *Group theory*.

Definition 8.15. Let G be a set and * a binary operation on G. The pair (G, *) is called a *group* if

(i) * is associative

(ii) there exists an identity for * in G

(iii) every element $g \in G$ has an inverse w.r.t. *.

When the binary operation * is understood, one usually just writes G rather than (G, *) to denote the group.

Definition 8.16. Let (G, *) be a group. If * is commutative, we say that G is an *abelian group*. If * is not commutative, we say G is *non-abelian*.

Notation 8.17. In a non-abelian group it is conventional to always use multiplicative notation. Hence one denotes the identity element as 1, denotes the inverse of g as g^{-1} and, in general, writes gh for g * h.

In an abelian group it is conventional to always use additive notation. Hence one denotes the identity element as 0, denotes the inverse of g as -g and, in general, writes g + h for g * h.

Now let's revisit the examples from above.

Example 8.10+ $(\mathbb{Z}, +)$ is an abelian group.

Example 8.11+ $(\mathbb{Q}^{\times}, \times)$ is an abelian group.

Example 8.13+ $GL_n(\mathbb{R})$ is a non-abelian group, under matrix multiplication, for each $n \geq 2$. Note, by the way, that $\mathbb{M}_n(\mathbb{R})$ is an abelian group under matrix addition.

Example 8.14+ For a set S, let G_S be the set of all permutations of S. Then G_S is a group under composition of functions. Note that, if S is a finite set, then so is G_S

and $|G_S| = |S|!$. In particular, one denotes by S_n the group of all permutations of $\{1, 2, ..., n\}$. It is called the symmetric group of order n. We have $|S_n| = n!$.

 S_n is non-abelian for all $n \ge 3$. For n = 3, the 3! = 6 elements of S_3 can be visualised as the symmetries of an equilateral triangle, see Figure 8.1. Each geometrical transformation corresponds to a function on the set $\{1, 2, 3\}$, by considering what happens to the three vertices of the triangle. Indeed, there are two ways to translate a geometrical transformation to a function:

 $f^1(i)$ = the vertex to which *i* is moved $f^2(i)$ = the vertex which replaces *i*.

It is clear that, as functions on $\{1, 2, 3\}$, f^1 and f^2 will be each others' inverses. In Figure 8.1, I have chosen the first option for the translation.

Important Remark 8.18. When using default multiplicative notation in an abelian group G, the convention is to read products g_1g_2 "from left to right". On the other hand, when the underlying binary operation is composition of functions, the standard \circ notation implies that one should read "from right to left". ¹ One must remember this when one uses the group notation and the group elements represent permutations of a set.²

When the group elements can be represented geometrically, as in Example 8.14+, there is the additional complication, as mentioned above, that there are two ways to translate from the geometrical transformation to a permutation of a set. One of these is the inverse of the other, which is the same thing as "changing the order of multiplication" since $(gh)^{-1} = h^{-1}g^{-1}$. The important thing is to always be consistent, whatever notation one chooses. In Figure 8.1, the group notation corresponds to performing the geometrical transformations in reverse order. For example:

$$f_5 = f_4 f_2 = f_2 \circ f_4,$$

 $T_5 = T_4 \circ T_2.$

4

¹This is a special case of the more general fact that, if * is a binary operation on a set A, then so is the operation \circ given by $a_1 \circ a_2 = a_2 * a_1$. The operation \circ will satisfy any of the properties in Definitions 8.3, 8.4, 8.5, 8.8 if and only if * does so.

²In fact, there is a general theorem which says that *any* group is a group of permutations on some set. See Lecture X.